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Abstract. Various algorithms for redistributing tasks in cluster 

computing systems are described. The results of calculating the 
probabilistic-time characteristics of the system with connection to 
the shortest queue and transitions between queues are presented. 
A number of models with different performance and node failures, 
with delays in the transition between nodes are described. The re-
sults of analytical and simulation modeling of the considered sys-
tems are compared. 
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INTRODUCTION 
Cluster technologies are currently widely used to solve the 

problems of ensuring the stability of the functioning and sur-
vivability of computing systems (CS) [1]. At the same time, 
there are cluster systems for various purposes – to increase fault 
tolerance by duplicating calculations (HA-clusters, High-avail-
ability), to ensure a uniform load of cluster nodes by redistrib-
uting it (LB-clusters, Load Balancing) or to ensure high perfor-
mance by parallelizing calculations between cluster nodes 
(HPC clusters, High performance computing). It is also possible 
to organize the work of a computing cluster in a mixed mode – 
with switching functions. 

Let's consider in more detail the problem of optimal load 
redistribution in cluster computing systems. It is relevant in 
solving problems of both optimizing bandwidth and increasing 

fault tolerance of distributed computing systems [1, 2]. Exam-
ples of such systems can be database query processing systems, 
Web factories, firewalls, mail and Web traffic content analysis 
systems, where sufficiently high response times are required. 

One of the load balancing mechanisms is dispatching in-
coming service requests. This mechanism redistributes the 
workload between several servers of the cluster system, which 
in general may have different performance. If they fail, the load 
is redistributed to other nodes of the cluster. At the same time, 
in a distributed system, there may be delays in transferring the 
load from one processing node to another. 

The objective of the article is to consider algorithms and an-
alytical and simulation models of load balancing with heteroge-
neous cluster architecture and various methods of dispatching 
organization. 

ALGORITHMS FOR DISPATCHING TASKS IN CLUSTERS 
Consider the models of a cluster computing system (Fig. 1), 

where the distribution of tasks between nodes is carried out by 
a hardware or software dispatcher (switching processor, spe-
cialized load balancing server, special software). Each node has 
the necessary means to organize a queue of tasks. The dis-
patcher has either a centralized or distributed implementation, 
when the dispatcher functions are performed in each of the 
nodes under consideration. The homogeneity of the CS nodes 
is not mandatory, i. e. nodes of different performance are al-
lowed. 

Fig. 1. Model with dispatching 
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There are deterministic, stochastic and adaptive dispatch al-
gorithms. 

1. Deterministic algorithms. 
The dispatcher directs the received task to a specific server: 
a) fixed dispatching (each task flow is sent to its «own» pre-

defined server); 
b) cyclic dispatching (each newly received task is sent to the 

next server by number, for example, in Round Robin, WRR, 
DRR cyclic algorithms). 

2. Stochastic algorithms. 
The dispatcher directs tasks to one of the cluster nodes with 

equal probability (as a generalization– with a given probability, 
depending on performance and other factors). The algorithm 
does not take into account the current degree of node load. 

3. Adaptive algorithms. 
The dispatcher directs the next incoming task based on the 

ratio of queue lengths to individual servers (as a generaliza-
tion — based on the ratio of productivity or serviceability of 
servers [3]. 

Obviously, adaptive algorithms do a better job with load 
balancing [4], but require additional information. A feature of 
the algorithms is the possibility of making a decision on load 
redistribution based on operational dynamically changing in-
formation, for example, information about queue lengths to 
servers [5, 6]. 

A large number of publications are devoted to the study of 
the problem of the shortest queue [7–10]. For the first time such 
a model was considered in [11]. At the same time, there are no 
exact analytical calculations in the literature for models with 
more than two servers – approximation methods are used [12]. 
Thus, approximations of the average response time for the case 
of K queues are presented in [13], assuming that different queue 
lengths can differ by no more than one. The boundaries for the 
average residence time of requirements in a two-channel system 
were obtained in [7] using linear programming methods. 

In [14], an approximation was developed to generalize the 
shortest queue model, namely, the model with the shortest ex-
pected delay in routing clients to servers with different operat-
ing speeds. 

Below we will consider various strategies for organizing the 
work of adaptive dispatch algorithms [3]: 

1. The dispatcher receives or does not receive additional in-
formation about the performance of nodes. 

2. The dispatcher directs the task to the node with the short-
est queue length or (if additional information is available) to the 
node with the lowest delay (the ratio of queue length to node 
performance). 

3. If the queue lengths (delays) are equal, the dispatcher di-
rects the task: 

a) to the node specified for each task flow; 
b) to the next node after the last node that received the task; 
c) to any node with equal probability; 
d) to the node with the highest performance; 
e) to any node with a probability proportional to performance. 
4. If the node capacities are equal, the dispatcher directs 

the task: 
a) to the node specified for each task flow; 
b) to the next node after the last node that received the task; 
c) to any node with equal probability. 
5. In addition to dispatching input tasks, it is possible to or-

ganize the transition of tasks between queues. After servicing 
the next task, when the difference between the shortest queue 
and the longest queues is more than ΔL (sensitivity threshold): 

a) redistributes the last task of the nearest of the longest 
queues preceding the shortest queue to the shortest queue; 

b) redistributes to the shortest queue the last task of one of 
the longest queues, selected equally likely; 

c) no longer redistributes tasks from the longest queues. 
Figure 2 shows the classification of algorithms for dispatch-

ing input tasks depending on the selected model. 

Fig. 2. Classification of dispatching algorithms  
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A MODEL WITH JOINING THE SHORTEST QUEUE  
AND TRANSITIONS BETWEEN QUEUES 

Despite the considerable interest in models with the shortest 
queue, the analytical results are still very modest, even with the 
simplest assumptions about the input flow and service flows. At 
the same time, models and algorithms have been developed 
that, in addition to joining the shortest queue, allow requests to 
move between queues during the waiting process. For the first 
time such a two-channel model was considered in [15]. In [5], 
expressions are obtained for the main characteristics of the 
model with connection to the shortest queue and transition bet-

ween queues based on a two-channel system with one input 
flow, different channel capacities and an infinite queue. The al-
gorithm of functioning and a device for modeling a two-channel 
system with connection to the shortest queue and transition be-
tween queues are described in [6]. 

Let's call this system a system with join the shortest queue 
and transition between queues — JSQ/TBQ. Consider the case 
of a two-channel system (m = 2) with a limited capacity of 
queue buffers Ki, i = 1, 2. Figure 3 shows the block diagram of 
this system [16]. 

Fig. 3. Block diagram of the JSQ/TBQ system 

The figure uses abbreviations: 
SRi — i-th source of requests; 
IFDi — i-th input flow dispatcher; 
IQBi — i-th input queue block; 
QCB — queue comparison block; 
SDi — i-th service device. 
The total input flow of requests from the sources of re-

quests (SRi) will be distributed in such a way as to load both nodes 
most optimally, since any task that enters the system will join the 
shortest queue. To do this, the input flow dispatchers (IFDi) use 
information about the difference in the lengths of the queues of the 
input queue blocks (IQBi) ΔL = L1 – L2 from the queue compari-
son block (QCB). In order to reduce the difference in queue lengths 
that occurs during the waiting for service due to the random nature 
of the request service process, a mechanism for transferring re-
quests between queues is used. We will assume that the transfer of 
requests from queue to queue is carried out at |ΔL| ≥ 2. 

We describe the algorithm of the system functioning [6, 7]. 
Step 1. Requests received from SRi to IFDi, depending on 

the state of the system: 
a) are sent to the queue of the first node if ΔL<0; 
b) are sent to the queue of the second node if ΔL>0; 
c) are removed from the system if the queues are full. 
Step 2. In cases a) and b) of step 1, the task enters the corre-

sponding service channel and becomes in the service queue in 
the input queue block (IQB). In case c), the request simply does 
not enter the system and is deleted. 

Step 3. The ratio of queue lengths is reported to the dis-
patcher by the QCB, which receives information about the 

lengths of queues L1 and L2 from both IQB. In case of inequal-
ity of queues depending on the signal ΔL, the dispatcher sends 
the request to the shortest queue. If the queues are equal, then 
the request is sent to the channel to which it was received. 

Step 4. In case of queue overflow, IQB signals to the dis-
patcher, who closes access to this channel for requests and 
transfers it to the neighboring channel. When both queues over-
flow, in addition to the overflow signal, the IFDi receives a 
queue equality signal from the QCB. The receipt of request s in 
the system is stopped until the seats in the queues are vacated. 

Step 5. From the IQB, the request is sent to the service device 
(SDi) for maintenance, the end of which it signals to the IQB in 
order to accept the next service request and replenish the queue 
if there was a limit number of requests in it. 

Step 6. If there is a difference in the queue lengths of more 
than one request, the BSO generates a signal for the transition 
of the last request from a longer queue to the end of a shorter 
one. In the QCB, after the transfer of the request is completed, 
the ΔL is changed. 

Thus, the alignment of queue lengths occurs not only due to 
the redistribution of the incoming input flow, but also due to the 
transfer of requests between queues. A special case of the sys-
tem is with one incoming flow and one fiberboard. 

The request distribution strategy can be of two types. The 
first type is when the ratio of the service rates of SD1 and SD2 
is known, the second is when there is no a priori information 
about their ratio. In the first case, if the queues are equal, the 
request is sent to the queue to the SD with greater rate, in the 
second — with equal probability. 
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CALCULATION OF THE CHARACTERISTICS  
OF THE SHORTEST QUEUE TWO-SERVER MODEL 

Consider a two-channel system JSQ/TBQ with two input 
flows, queue end drives and different node performance (Fig. 4). 

Fig. 4. Model of two-channel Queuing system JSQ/TBQ  
with finite storage devices 

The general dispatcher is distributed, consists of local dis-
patchers LD1 and LD2, exchanging information about the sta-
tus of queues. Requests come from two different input flows 
and are sent to the node with the smallest queue. If the queue 
lengths are equal, the incoming request is sent to a node with 
a higher service rate, if the same or unknown ratio of service 
rates is equal — to a node with the same number. During the 
waiting process, the last task from the longest queue goes to 
the shortest queue with a queue difference equal to the sensi-
tivity threshold. In the simplest case, the sensitivity threshold 
is two. The transition time to the next queue, both when a re-
quest is received and during the waiting process, is generally 
not equal to zero. If both queues overflow, the incoming re-
quest is rejected. 

The transition graph of the system is shown in Figure 5. 
 

Fig. 5. The transition graph of the system 

The states characterize the number of requests in each node. 
Each arrow is set in accordance with the rate of transitions. At 
the same time, the number of tasks in each node does not differ 
from each other by more than 1, which corresponds to the dis-
patching algorithm. We denote by Pi,i, Pi,i+1, Pi+1,i the stationary 
probabilities of the state of the system. Based on the transition 
graph, in accordance with the conservation laws of queue the-
ory [17], we will compile a system of equations and transform 
it to the following form: 

𝑝𝑝01 = 𝑝𝑝00
ρ(λ1 + λ2) + λ2

(2ρ + 1)μ2

𝑝𝑝10 = 𝑝𝑝00
ρ(λ1 + λ2) + λ1

(2ρ + 1)μ1
⋮

𝑝𝑝𝑖𝑖𝑖𝑖 = ρ2𝑖𝑖−1(𝑝𝑝10 + 𝑝𝑝01), 𝑖𝑖 = 1 ÷ 𝐾𝐾

𝑝𝑝𝑖𝑖,𝑖𝑖+1 = ρ2𝑖𝑖−1(𝑝𝑝10 + 𝑝𝑝01)
ρ2μ1 + λ2

λ1 + λ2 + μ1 + μ2

𝑝𝑝𝑖𝑖+1,𝑖𝑖 = ρ2𝑖𝑖−1(𝑝𝑝10 + 𝑝𝑝01)
ρ2μ2 + λ1

λ1 + λ2 + μ1 + μ2
⋮

𝑝𝑝𝐾𝐾𝐾𝐾 = ρ2𝐾𝐾−1(𝑝𝑝10 + 𝑝𝑝01). ⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

         (1) 

Herein ρ=λ/µ — system load factor; λ=λ1+λ2 — the total arri-
val rate; µ=µ1+µ2 — total service rate. 

We take 𝜆𝜆1 = 𝑟𝑟𝜆𝜆, 𝜇𝜇1 = 𝑠𝑠𝜇𝜇, where r and s are the coeffi-
cients of the asymmetry of the input flow and the service flow. 
Based on this and the conditions 𝑝𝑝𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖+𝑖𝑖 , 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝2𝑖𝑖 , 
we bring the system (1) to the following form: 

𝑝𝑝1 = 𝑝𝑝0
ρ2 + ρ(𝑟𝑟 + 𝑠𝑠 − 2𝑟𝑟𝑠𝑠)

(2ρ + 1)(𝑠𝑠 − 𝑠𝑠2)
𝑝𝑝2 = ρ × 𝑝𝑝1

⋮
𝑝𝑝𝑖𝑖 = ρ𝑖𝑖−1𝑝𝑝1

⋮
𝑝𝑝2𝐾𝐾 = ρ2𝐾𝐾−1𝑝𝑝1 . ⎭

⎪⎪
⎬

⎪⎪
⎫

                           (2) 

From (2) and the normalization condition (the sum of all 
probabilities of states is equal to one), we find the probability 
of a free state of the system: 

𝑝𝑝0 =
1

�1 + 1 − ρ2𝐾𝐾
1 − ρ × ρ(ρ + 𝑟𝑟 + 𝑠𝑠 − 2𝑟𝑟𝑠𝑠)

(1 + 2ρ)(𝑠𝑠 − 𝑠𝑠2) �
 .         (3) 
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If the node capacities are equal, the formula for p0 completely 
coincides with the similar formula for a two-channel system 
M/M/2/K: 

𝑝𝑝0 =
1 − ρ

1 + ρ − 2ρ2𝐾𝐾+1
 .                                (4) 

With an infinite queue accumulator, formula (3) takes the 
form: 

𝑝𝑝0 = 1 �1 +
ρ(ρ + 𝑟𝑟 + 𝑠𝑠 − 2𝑟𝑟𝑠𝑠)

(1 − ρ)(1 + 2ρ)(𝑠𝑠 − 𝑠𝑠2)
�� . 

And with equal productivity µ1 = µ2: 

𝑝𝑝0 = (1 − 𝜌𝜌) (1 + 𝜌𝜌)⁄ . 

Average response time T in the system under consideration: 

𝑇𝑇 = 𝑝𝑝0
(ρ + 𝑟𝑟 + 𝑠𝑠 − 2𝑟𝑟𝑠𝑠)
μ(1 + 2ρ)(𝑠𝑠 − 𝑠𝑠2)

× �
1 − ρ2𝐾𝐾

(1 − ρ)2
−

2𝐾𝐾ρ2𝐾𝐾

1 − ρ
� .   (5) 

From (5), you can get the average number of requests in the 
system: N = λT. 

It is also of interest what proportion of the total number of 
requests is served in the first and which in the second node, how 
it varies depending on the coefficients s and r. 

The probabilities of servicing requests in the corresponding 
node Pserv1 and Pserv2 depend on three events – on the probability 
of joining the request from the common input flow to the cor-
responding queue, on the probability of transferring the request 
from the neighboring queue and the probability of transferring 
the request to the neighboring queue: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 = 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗1 + 𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗𝑠𝑠2→1 − 𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗𝑠𝑠1→2  ;                   (6) 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 = 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2 + 𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗𝑠𝑠1→2 − 𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗𝑠𝑠2→1 ,                   (7) 

where 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗1 — probability of joining the input request to the 
first queue; 
𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2 — probability of joining the input request to the second 
queue; 
𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗𝑠𝑠2→1  — the probability of the transition of the request from the 
second stage to the first; 
𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗𝑠𝑠1→2  — the probability of the transition of the request from the 
first stage to the second. 

𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗1 = 𝑝𝑝01 + 𝑝𝑝12+. . . +𝑝𝑝𝑘𝑘−1𝑘𝑘 + 𝑟𝑟�𝑝𝑝00 + 𝑝𝑝11+. . . +𝑝𝑝𝑘𝑘−1,𝑘𝑘−1�; 

𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2 = 𝑝𝑝10 + 𝑝𝑝21+. . . +𝑝𝑝𝑘𝑘𝑘𝑘−1 + (1 − 𝑟𝑟)�𝑝𝑝00 + 𝑝𝑝11+. . . +𝑝𝑝𝑘𝑘−1,𝑘𝑘−1�. 

It is clear from formulas (8)–(9) that 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 = 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗1 + 𝑃𝑃𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗2 . 

If both queues overflow, the request will be denied service: 

𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1 + 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 + 𝑝𝑝𝑑𝑑𝑠𝑠𝑗𝑗 = 1. 

The probability of denial of service is defined as the proba-
bility that all places in the queue are occupied, i. e. 

𝑝𝑝𝑑𝑑𝑠𝑠𝑗𝑗 = 𝑝𝑝𝐾𝐾𝐾𝐾 = 𝑝𝑝0 × ρ2𝐾𝐾−1 ×
ρ(ρ + 𝑟𝑟 + 𝑠𝑠 − 2𝑟𝑟𝑠𝑠)
(1 + 2ρ)(𝑠𝑠 − 𝑠𝑠2)

 . 

For the probabilities of request transitions between queues 
after joining the shortest queue, we have: 

𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗𝑠𝑠2→1 = �𝑝𝑝12 + 𝑝𝑝23 + ⋯+ 𝑝𝑝𝐾𝐾−1,𝐾𝐾� ×
μ1
μ

= 

= 𝐺𝐺 × (ρ𝑠𝑠 + 1 − 𝑟𝑟) × 𝑠𝑠 ; 

𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡𝑗𝑗𝑠𝑠1→2 = �𝑝𝑝21 + 𝑝𝑝32 + ⋯+ 𝑝𝑝𝐾𝐾,𝐾𝐾−1� ×
μ2
μ

= 

= 𝐺𝐺 × (ρ(1 − 𝑠𝑠) + 𝑟𝑟) × (1 − 𝑠𝑠) , 

where 

𝐺𝐺 = 𝑝𝑝0ρ3
(ρ + 𝑟𝑟 + 𝑠𝑠 − 2𝑟𝑟𝑠𝑠) × (1 − ρ2𝐾𝐾−2)
(𝑠𝑠 − 𝑠𝑠2)(1 + 2ρ)(1 + ρ)(1 − ρ2)

 . 

We will determine what the parameters of the system under 
study should be in order to meet the requirements of the opti-
mality of the service process. It follows from (3) that p0 will be 
the maximum at the minimum of the function 

𝑧𝑧 =
𝜌𝜌(𝜌𝜌 + 𝑟𝑟 + 𝑠𝑠 − 2𝑟𝑟𝑠𝑠)

(1 + 2𝜌𝜌)(𝑠𝑠 − 𝑠𝑠2)
 . 

Let r and ρ be constant. Then we have 

𝑑𝑑𝑧𝑧
𝑑𝑑𝑠𝑠

=
ρ(1 − 2𝑟𝑟)𝑠𝑠2 − ρ(1 − 2𝑠𝑠)(𝑟𝑟 + ρ)

(1 + 2ρ)(𝑠𝑠 − 𝑠𝑠2)2
 . 

Equate the numerator to 0: 

ρ(1 − 2𝑟𝑟)𝑠𝑠2 − ρ(1 − 2𝑠𝑠)(𝑟𝑟 + ρ) = 0 ; 

(1 − 2𝑟𝑟)𝑠𝑠2 + 2(𝑟𝑟 + ρ)𝑠𝑠 − (𝑟𝑟 + ρ) = 0 . 

The first root of the quadratic equation: 

𝑠𝑠 =
�ρ2 − 𝑟𝑟2 + ρ + 𝑟𝑟 − ρ − 𝑟𝑟

1 − 2𝑟𝑟
 .                  (8) 

The second root is negative. 
Thus, the maximum value of p0 will be for the correspond-

ing load with a certain ratio of node service rates determined by 
expression (8). Let's make a table (Table 1) the maxima p0 cor-
responding to the optimal values of the coefficient s at different 
load factors ρ. 

Table 1 
The maximum values of p0 at different r and ρ  

and optimal values of s, K = 25 
 ρ = 0.1 ρ = 0.5 ρ = 0.9 

r = 0.1 
sopt 0.309 0.396 0.427 

p0max 0.838 0.343 0.054 

r = 0.3 
sopt 0.414 0.449 0.464 

p0max 0.822 0.336 0.053 

r = 0.5 
sopt 0.500 0.500 0.500 

p0max 0.818 0.333 0.053 

r = 0.7 
sopt 0.586 0.551 0.536 

p0max 0.822 0.336 0.053 

r = 0.9 
sopt 0.691 0.604 0.573 

p0max 0.838 0.343 0.054 
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For r = 0.5, expression (8) does not make sense, since at this 
point s cannot be optimal, and p0 cannot be greater than that of 
the M/M/2/K system. The boundary value will be s = 0.5, at 
which the p0 of the system under study coincides with the p0 of 
the system M/M/2/K. 

We define the boundaries within which the values of the co-
efficients r and s should lie, so that the system under study is 
not inferior to the system M/M/2/K in probabilistic characteris-
tics. To do this, we compare formulas (3) and (4) and set the 
condition: 

1 − ρ + (1 − ρ2𝐾𝐾) ×
ρ(ρ + 𝑟𝑟 + 𝑠𝑠 − 2𝑟𝑟𝑠𝑠)
(1 + 2ρ)(𝑠𝑠 − 𝑠𝑠2) ≤ 1 + ρ − 2ρ2𝐾𝐾+1 . 

As a result of the transformations, we get 

(4𝜌𝜌 + 2)𝑠𝑠2 − (1 + 2𝑟𝑟 + 4𝜌𝜌)𝑠𝑠 + (𝜌𝜌 + 𝑟𝑟) ≤ 0 . 

From the square inequality we obtain two roots that define 
the boundaries (sectors) of the optimal values of the coefficients 
s and r: 

𝑠𝑠1 =
2𝑟𝑟 + 4ρ + 1 + (2𝑟𝑟 − 1)

4(2ρ + 1)
=

ρ + 𝑟𝑟
2ρ + 1

 ;              (9) 

𝑠𝑠2 =
2𝑟𝑟 + 4ρ + 1 − (2𝑟𝑟 − 1)

4(2ρ + 1)
= 0.5 .                (10) 

Let's make a table of the boundary values of s and r for dif-
ferent ρ (Table 2). For example, using the values (8)–(10), we 
will plot a graph for ρ = 0.1 (Fig. 6). 

Table 2 
Boundary values of the coefficient s 

 ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9 
r = 0.0 0.080 0.188 0.250 0.292 0.321 

r = 0.5 0.500 0.500 0.500 0.500 0.500 

r = 1.0 0.917 0.813 0.750 0.708 0.679 

Fig. 6. Optimal values of the coefficient s 

The graph shows that at r = 0.5 there is only one optimal 
point s = 0.5, at which the characteristics of the system under 
study and the system M/M/2/K coincide. As the load increases, 
the angle of the sector, and hence the range of optimal values of 
r and s, decreases. 

A MODEL WITH A DELAY IN TRANSMISSION BETWEEN QUEUES 
Let's now briefly consider the case when the delay in trans-

ferring tasks from the local dispatcher or from the queue to an-
other queue is not zero. This is possible in global cluster systems, 
in which the transmission time is comparable to the service time 
in the nodes, and not taking into account this delay time will in-
troduce a significant error in the calculations. The transfer of an 
request to a neighboring queue occurs when a serviced request 
drops out of a node with less than 1 number of request s in the 
queue and the difference in queues reaches 2 (Figure 7). Also, the 
transition occurs when the request arrives at its «own» node, in 
which there is 1 more in the queue than in the neighboring queue. 
In principle, the trigger threshold may be higher to prevent fre-
quent transitions between queues. 

Fig. 7.The transition graph of the system 

The temporary states i - 1, i + 1 and i + 1, i - 1 are marked 
with a dotted line, because the system, after a random delay time 
in transmitting a request from channel to channel (τ12 or τ21), en-
ters the equilibrium state i, i. Then the rate of the transition from 
states i, i - 1 and i - 1, i to state i, i through intermediate states 
i - 1, i + 1 and i + 1, i - 1 can be expressed from the equations: 

1
λ1
∗ =

1
λ1

+ τ12;  
1
λ2
∗ =

1
λ2

+ τ21 ; 

1
μ1∗

=
1
μλ1

+ τ21;  
1
μ2∗

=
1
μ2

+ τ12 . 
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We get: 

λ1
∗ =

λ1
1 + λ1τ12

 ;  λ2
∗ =

λ2
1 + λ2τ21

 ; 

μ1∗ =
μ1

1 + μ1τ21
 ;  μ2∗ =

μ2
1 + μ2τ12

 . 

Composing a transition graph and a system of equations 
based on it, we find expressions for the stationary probabilities 
of the states of the system. So, for λ1 = λ2 = λ, μ1 = μ2 = μ 
and delay τ12 = τ21 = τ𝑑𝑑 the probability of downtime p0 has the 
form: 

𝑝𝑝0 =
1

�1 + 1 − 𝑅𝑅𝐾𝐾
1 − 𝑅𝑅 × (2ρ + ρ2 2 + λτ𝑑𝑑

1 + λτ𝑑𝑑
�

 ,         (11) 

where 

𝑅𝑅 = ρ2
2 + λτ𝑑𝑑
1 + λτ𝑑𝑑

×
1 + μτ𝑑𝑑
2 + μτ𝑑𝑑

 . 

For τ𝑑𝑑 = 0, formula (11) reduces to expression (4). 

SIMULATION MODELS OF ADAPTIVE DISPATCHING  
SIMULATION RESULTS 

Unfortunately, not all models can be studied analytically. 
Therefore, during the research, the following variants of two- 
and three-channel simulation models of cluster systems with a 
finite queue storage in the GPSS World language were also de-
veloped and investigated: 

1) models with the shortest queue and transition between 
queues; 

2) models with node failures; 
3) models with delayed transmission of requests between 

nodes; 
4) models with the shortest delay in the system (the ratio of 

queue length to node performance). 
During the simulation, various load variants were tested: sub-

critical (ρ = 0.5), critical (ρ = 0.95) and supercritical (ρ = 1.5; 2.0). 
A comparative analysis of 4 two-channel simulation models 

was carried out: M1 (the system with the lowest delay), M2 (the 
system with the shortest queue), M3 (the M/M/2/K system), M4 
(two single M/M/1/K systems). The M1–M2 models also have 
a mechanism for setting a non-zero delay in the transfer of re-
quests between nodes. Three analytical models M2–M4 are also 
considered. 

In the model with the lowest delay M1, the application is 
attached to the node with the lowest ratio of queue length to 
service intensity. In general, the model shows better results 
compared to the model with the shortest queue, but the imple-
mentation of the dispatcher will be more difficult due to the cal-
culation of the node with the least delay, which may affect the 
decision time on the distribution of the next request. 

Simulation also confirmed that it is impossible to achieve an 
advantage over a two-channel system with the same service in-
tensities. Models with dispatching asymptotically approach the 
characteristics of the M/M/2/K system. But the gain can be 
achieved with a heterogeneous system architecture. In addition, 
models with adaptive dispatching allow us to study systems 
with global clustering [1]. 

CONCLUSIONS 
With an increase in the number of nodes and, accordingly, 

queues, the queue selection strategy and the analytical descrip-
tion of the model become much more complicated. 

The inclusion in the block diagram of a model with the 
shortest queue of connections for the transition of requirements 
between queues significantly improves its characteristics, 
which is explained by the greater adaptability of the model to 
load balancing. 

Response time in the system JSQ/TBQ can achieve an ad-
vantage in comparison with the M/M/2/K system with different 
channel capacities and a certain optimal ratio. 

Taking into account the performance of nodes during load 
redistribution significantly improves the time characteristics of 
job maintenance, but complicates the implementation of the dis-
patcher. 
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Аннотация. Описаны различные алгоритмы перераспре-

деления заданий в кластерных вычислительных системах. 
Приведены результаты расчета вероятностно-временных ха-
рактеристик системы с присоединением к кратчайшей оче-
реди и переходами между очередями. Описан ряд моделей с 
разными производительностями и отказами узлов, с задерж-
ками при переходе между узлами. Выполнено сопоставление 
результатов аналитического и имитационного моделирова-
ния рассматриваемых систем. 

Ключевые слова: кластер, балансировка нагрузки, модели 
с кратчайшей очередью, теория очередей, диспетчеризация, 
переход между очередями, присоединение к кратчайшей оче-
реди. 
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