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Abstract. The main problematic issues in the development and specialization of LLM are: catastrophic 
forgetting, the risk of overfitting, hallucinations, incorrect interpretations, incorrect processing of exceptional 
situations as well as exceptionally high performance requirements for the computing tools used in this case. 
The purpose of the study is to select and develop methods for optimizing the training and fine-tuning process 
LLM, providing a significant reduction in the computing resources required for this. To achieve this goal, it is 
proposed to use the following methods of optimizing LLMs and their learning algorithms: LoRA and QLoRA, 
Batch size choice, Gradient Accumulation, Gradient Checkpoint, Mixed precision training, FlashAttention-2. 
To obtain a cumulative positive effect when using these methods together, it is necessary to perform a number 
of practical experiments. When setting up LLM learning hyperparameters, you should first determine which 
package size gives the best results, and then choose adequate methods to optimize the computing resources 
used. The application of the presented methods will increase the efficiency of using computing resources when 
training and fine-tuning large language models and will reduce the time and financial costs necessary for this.

Keywords: fine-tuning, gradient accumulation, graphics processing unit, Large Language Model, Low-Rank 
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Introduction
The current stage of global development is 

characterized by the active introduction of artificial 
intelligence technologies into industry, science, 
education and other spheres of economic and social 
life, vivid examples of which are deep learning 
methods and generative artificial intelligence. Large 
language models (LLM) created with their help are 
capable of processing and creating texts, understanding 
and synthesizing speech, images, generating program 
code, solving analytical, mathematical and other 
non-trivial tasks. The main problematic issues in 
the development and specialization of LLM are: 
catastrophic forgetting, the risk of overfitting, 
hallucinations, incorrect interpretations, correct 

handling of exceptional situations, ensuring the 
integrity of models, exceptionally high performance 
requirements for computing tools used in LLM training.

This article discusses methods for optimizing the 
training and fine-tuning process LLM, which ensure 
a significant reduction in the computing resources 
required for this with minimal loss of quality of the 
created models.

Stages of development of specialized systems 
based on large language models

The technological chain of the process of creating 
specialized software systems based on large language 
models includes three main stages: the development 
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of a basic model, preliminary specialization and fine-
tuning to solve problems in a specific subject area.

At the initial stage, the model is trained on 
unstructured and unlabeled data. The main data sources 
that were used in the development of most modern 
LLMs are: Wikipedia, Common Craw, BooksCorpus 
(a collection of book texts), OpenWebText (a set of 
articles from the Internet). The result is a basic general 
purpose LLM. Examples of such models are GPT 4, 
GPT 3.5, Claude2, Gemini, Falcon, Llama, T5 [1].

At the second stage, the LLM is finalized through 
self-study on specially prepared data, which adjusts 
the model to solve problems of a certain class. At the 
third stage, such models undergo additional training 
with reinforcement based on expert feedback (RLHF, 
Reinforcement Learning from Human Feedback). 
Such open-source LLMs as Llama, Vicuna 13B, 
Mixtral 7B, T5 can be used to create specialized 
LLMs [1, 2]. As a result, domain-specific AI systems 
are being created, designed to solve certain tasks in 
specific areas of application.

LLM training and fine-tuning require high-
performance computers, large amounts of RAM and 
disk memory, and graphics processing unit — GPU. 
During LLM training, GPU memory is used to store 
model weights, optimizer states, gradients (parameter 
derivatives), and direct activations stored to calculate 
gradients. When calculating weight coefficients in fp32 
format, 4 bytes of GPU memory are required per LLM 
parameter. Thus, to load a model with three billion 
parameters, 12 GB of memory (4 bytes × 3000000) will 
be required. In addition, an additional 6 GB (2 bytes × 
× 3000000) will be required to store the states of the 
AdamW 8-bit optimizer, and 12 GB of memory (4 bytes × 
× 3000000) will be required to accommodate gradients. 
Thus, it turns out that to train a model with three billion 
parameters, at least 30 GB of RAM will be required. 

The main characteristics of the GPU are: memory 
capacity, performance on special floating-point tasks, 
scalability, virtualization support, power consumption 
and price. Depending on the characteristics, the cost 
of the GPU varies from hundreds of thousands (4090 
ADA 24 GB 3.5 Slot FP16 = 83 TFLOPS) to several 
million rubles (H100 Hopper 80 GB, FP16 = 204.9 
TFLOPS) [3, 4]. At the same time, according to 

estimates [2], to train LLM with 3 billion parameters, 
it is necessary to use 128 GPU A100 40 GB for 7 days. 
Given that modern LLMs have tens and hundreds of 
billions of parameters, it becomes obvious that there 
is an urgent need to develop methods to optimize the 
processes of their training, configuration and use.

The research task
In connection with the above, it becomes obvious 

that there is an urgent need to develop and apply 
less expensive methods and tools for training and 
configuring LLM that can implement these processes 
without significantly reducing the quality of the 
intelligent systems created at the same time. The 
following subsections of the article provide a brief 
description of such methods and tools, as well as 
suggestions for their optimal use.

Method for fine-tuning large language models
In order to reduce the performance requirements 

of computing tools used in LLM training, methods 
Parameter-Efficient Fine-Tuning (PEFT) have been 
developed and are being used. A description of modern 
methods and tools for fine-tuning LLM is presented in 
[5–9]. The software implementation of these methods 
is presented in the peft library on site huggingface.co.

Methods for fine-tuning effective LLM parameters, 
unlike full model tuning, provide training for only 
a small set of parameters (PEFT), which can be a 
subset of existing model parameters or a set of added 
parameters. Usage PEFT methods allows you to 
reduce training time, reduce the cost of computing 
and storing models, reduce the risks of overtraining, 
overcome catastrophic forgetting, correctly handle 
exceptional situations, and ensure ease of deployment 
and transfer to other devices.

Currently, the most promising methods of fine 
tuning are: LoRA (Low-Rank Adaptation) and 
QLoRA (Quantization-Aware LoRA). The LoRa 
method focuses on changing the weights of only 
certain layers and parameters of the basic LLM, 
focusing on those that are most useful for solving 
problems of this class. This is achieved by applying 
matrices with significantly lower rank than the 
matrices of the basic model to adjust the weights. 
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LoRa applies only to transformer query and value 
matrices, which means that the multilayer perceptron 
is frozen and only attention weights are adapted. 
The loss function is optimized by passing the 
gradient through the frozen model to the adapters. 
The formula describing the LoRA method in tensor 
notation has the following form:
 W0 + ∆W = W0 + BA,    

where  W0 is the weight matrix of the pre-trained 
model; 

  ∆W is the updated and added weight coefficients 
during the adaptation of the original model; 

  A ∊ Rr × k is a matrix of size r × k, the elements 
of which are random variables corresponding to 
the normal distribution law N(μ, σ2), where μ = 0 
(the average value of the value), σ is the standard 
deviation; B ∊ Rd × r is a matrix of size d × r, the 
elements of which are assigned zeros at the initial 
stage of training.
An important advantage of LoRa is the ability to 

use the same model for different tasks by replacing the 
weights in matrices A and B, reducing the amount of 
memory needed to store different models. 

The QLoRA method (LoRA with quantization) 
is designed to deploy models in environments with 
limited resources. It allows you to significantly 
reduce the requirements for the necessary amounts 
and performance of GPU and CPU, as well as 
computing power, for deploying and configuring 
models. QLoRA is a modification of the LoRA 
method by quantifying the model parameters, i.e. 
reducing the accuracy of the weighting coefficients, 

while maintaining the necessary correctness and 
performance.

The number of parameters is determined by the 
rank and shape of the original weights. In practice, 
trainable parameters vary as low as 0.1 % to 1 % of all 
the parameters. As the number of parameters needing 
fine-tuning decreases, the size of gradients and 
optimizer states attached to them decrease accordingly. 
Thus, the overall size of the loaded model reduces. For 
example, the Llama 2 7B model parameters could be 
loaded in int8 (1 byte), with 1 GB trainable parameters 
loaded in fp16 (2 bytes). Hence, the size of the gradient 
(fp16), optimizer states (fp32), and activations (fp32) 
aggregates to approximately 7–9 GB. This brings the 
total size of the loaded model to be fine-tuned to 15–
17 GB, as illustrated in Fig. 1.

Thus, thanks to the use of LoRA, it was possible to 
reduce the amount of memory required to configure 
Llama 2 7B by 4 times.

Methods for optimizing the learning process and 
configuring large language models

In order to increase the efficiency of using 
computing resources when training large language 
models to solve problems in a certain subject area, the 
following approaches and methods are currently used: 
Gradient Accumulation, Gradient Checkpoint, Mixed 
precision training, FlashAttention-2 [10–12].

The Gradient Accumulation method provides 
the calculation of gradients in smaller increments 
instead of calculating them for the entire batch at 
once. Iterative calculation of gradients is performed 
in small batches by performing forward and reverse 

Fig. 1. Schematic showing an example of memory footprint of LoRA fine tuning with Llama 2 7B model
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passes through the model and accumulating gradients 
in the process. Once a sufficient number of gradients 
have been accumulated, the model is optimized. 
Using this method, the effective packet size can be 
increased beyond the limits imposed by the amount 
of memory of the GPU. At the same time, it should 
be borne in mind that additional passes forward and 
backward, implemented in the process of gradient 
accumulation, can slow down the learning process. To 
use this method when training a model, the gradient_
accumulation_steps argument must be included in the 
TrainingArguments configuration file:

training_args = TrainingArguments(per_device_
train_batch_size=1, gradient_accumulation_steps=4, 
**default_args)

Using the “Gradient Accumulation” method allows 
you to maximize the use of GPU resources. Examples 
and results of the application of the “gradient 
accumulation” method are presented in [12].

To save all forward pass activations, significant 
amounts of memory must be allocated to calculate 
gradients during the reverse pass. If you do not save the 
activations, then their re-calculation during the reverse 
passage through the graph of the model will lead to 
significant computational costs and slow down the 
learning process. The “Gradient Checkpointing” method 
offers a compromise between these two approaches and 
preserves strategically important activations for the 
entire computational graph at certain control points. 
Due to this, only a part of the activations needs to be 
calculated again. To use this method, the “gradient_
checkpointing=True” argument must be included in the 
TrainingArguments configuration file. The use of this 
method increases the efficiency of memory usage, but 
slows down learning by about 20 % [12].

Using the “Mixed precision training” method, the 
efficiency of the model training process is increased 
by using lower precision numerical formats for certain 
variables. Most models use 32-bit floating-point precision 
(fp32 or float32) to represent and process variables. 

However, not all variables require such a high level 
of accuracy to achieve good results. By reducing the 
precision of some variables, for example, to 16-bit 
floating point values (fp16 or float16), calculations can 
be accelerated. The main advantage of mixed-precision 

learning is the storage of half-precision activations 
(fp16). Although gradients are also calculated with 
half accuracy, they are converted back to full accuracy 
during the optimization stage. Therefore, there is no 
memory saving in this case. 

Thus, learning with mixed accuracy, on the one 
hand, leads to faster calculations, and on the other 
hand, it can lead to an increase in the amount of GPU 
memory used, especially with small packet sizes. 
This is due to the fact that the model is now present 
on the GPU with both 16-bit and 32-bit precision, i.e. 
1.5 times more than the original model. The scheme 
of the algorithm mixed precision method, used for 
calculating LLM parameters is shown in Fig. 2.

Fig. 2. Scheme of the algorithm mixed precision method



9Intellectual Technologies on Transport. 2024. No. 3

Artificial intelligence and machine learning

The parameters P[NFP32] received at the input of 
the algorithm in FP32 format are converted to FP16 
format. The loss level is set to FP32. During backward 
computation, the value is multiplied by the loss scale to 
avoid overflow due to a small gradient value. A parameter 
in FP16 format is used to calculate the gradient, and the 
result is converted to FP32. Then the value is divided 
by the loss scale to restore the multiplied gradient. The 
optimizer checks if the gradient is overflowing. If yes, 
the optimizer skips the update. If not, the optimizer 
uses FP32 to update the initial parameters. To use the 
mixed precision method, you must set the “fp16=True” 
parameter in the Training Arguments configuration file.

FlashAttention-2 is a faster and more efficient 
implementation of the standard attention mechanism, 
which can significantly speed up logical inference due to:

• additional parallelization of attention calculations 
along the length of the sequence;

• separation of work between GPU threads to 
reduce data exchange and read/write operations in 
shared memory between them.

FlashAttention-2 can only be used if the model format 
is fp16 or bf16. To use the FlashAttention-2 method, the 
“attn_implementation=“flash_attention_2”” parameter 
must be included in the model description. FlashAtten-
tion-2 can be combined with other optimization methods 
such as quantization. Below is an example of using this 
method in combination with 8-bit quantization:

# load in 8bit
model = AutoModelForCausalLM.from_pretrained
(model_id, 
load_in_8bit=True,
attn_implementation“flash_attention_2”)
Reducing the requirements for the amount of 

GPU memory required for LLM training can be 
achieved by choosing the optimal optimizer. Below 
are the GPU memory requirements required by three 
different optimizers when learning LLM with 3 billion 
parameters [10]:

• the standard AdamW optimizer will require 
24 GB of GPU memory, since 8 bytes are used for 
each parameter (8*3 => 24 GB);

• adafactor optimizer will require more than 
12 GB, because a little more than 4 bytes are used for 
each parameter;

• an 8-bit quantized BNB optimizer will use 
only (2*3) 6 GB if all the states of the optimizer are 
quantized.

Adafactor does not store moving averages for 
each element in weighting matrices. Instead, it stores 
aggregated information (sums of moving averages by 
rows and columns), which significantly reduces the 
memory used. 

However, compared to Adam, Adamfactor may have 
slower convergence in some cases. Which optimizer 
will be used is determined in the TrainingArguments 
configuration file using the “optim=“adafactor”” 
parameter.

In combination with other approaches (gradient 
accumulation, gradient checkpoint detection, and 
training with mixed accuracy), you can get a three-
fold reduction in the size of the required memory 
while maintaining bandwidth. However, as mentioned 
earlier, the convergence coefficient of Adafactor may 
be worse than Adam.

An example of program implementing  
a learning cycle of a large language model

This section provides an example of a program that 
uses the methods described above to training basic LLM 
using the functions of the Accelerate library of the Pytorch 
framework. The configuration file includes a description 
of the following parameters of the learning process:

training_args = TrainingArguments
(per_device_train_batch_size=1,
gradient_accumulation_steps=4,
gradient_checkpointing=True
fp16=True,
**default_args)
A fragment of a program that implements a learning 

cycle using the Accelerator module:
from accelerate import Accelerator
from torch.utils.data.dataloader import DataLoader
dataloader = DataLoader(ds, batch_

size=training_args.per_device_train_batch_size)
if training_args.gradient_checkpointing:
model.gradient_checkpointing_enable()
accelerator = Accelerator(fp16=training_args.fp16)
model, optimizer, dataloader = accelerator.

prepare(model, adam_bnb_optim, dataloader)
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First, we load the training dataset using the 
DataLoader data loader. To optimize the learning 
process of the model, we use the gradient_
checkpointing_enable() method and the mixed 
precision learning mode — fp16. In the call to the 
prepare method, it is determined that the data loader 
will be distributed between processes if we use several 
GPUs, and the 8-bit adam_bnb_optim optimizer 
will be used for training. Below is a fragment of the 
program that implements the main learning cycle:

model.train ()
for step, batch in enumerate (dataloader, start=1):
loss = model(**batch).loss
loss = loss / training_args.gradient_accumulation_

steps
accelerator.backward(loss)
if step % training_args. gradient_accumulation_

steps == 0:
optimizer.step()
optimizer.zero_grad()
Step is the number of accumulation steps, batch is 

the batch size assigned in the dataloader. The error back 
propagation method is performed using the accelerator 
function.backward(loss). Gradient accumulation is 
performed as follows: we normalize the losses, get 
the average value at the end of accumulation, and as 
soon as we have enough steps, we start the model 
learning process – optimizing the model weights using 
the optimizer.step(). Optimizer method.zero_grad() – 
resets the gradients of all optimized tensors (weight 
coefficients).

The methods discussed in this article allow you to 
reduce the learning time and increases efficiency the 
use of GPU and CPU. To obtain a cumulative positive 
effect when using these methods together, it is necessary 

to plan and perform a number of practical experiments. 
When setting up LLM learning hyperparameters, you 
should first determine which package size gives the best 
results, and then choose adequate methods to optimize 
the computing resources used. Examples and results of 
such studies and experiments are presented in [12–15].

Conclusion
This article presents methods to reduce the 

requirements for the number and performance of 
computing tools necessary for teaching large language 
models by optimizing models and algorithms for their 
training, as well as methods to increase the efficiency 
of using available computing resources when they 
are fine-tuned to solve problems in a specific subject 
area. The most significant results presented in the 
article, from the point of view of scientific novelty and 
practical significance, are: 

1. Methodological recommendations for the 
use of LoRA (Low-Rank Adaptation) and QLoRA 
(Quantization-Aware LoRA) methods for fine-tuning 
large language models, which provide a significant 
(by an order of magnitude or more) reduction in 
computing performance requirements. 

 2. Algorithmic and software support of LLM 
learning processes using the methods Gradient 
Accumulation, Gradient Checkpoint, Mixed precision 
training and FlashAttention-2, which provides an 
increase in the efficiency of using available computing 
resources when teaching and using large language 
models to solve problems in a specific subject area. 
With the complex and correct application of these 
methods, it is possible to obtain a threefold reduction 
in the size of the required memory while maintaining 
bandwidth and the quality of the results obtained.
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Аннотация. Основными проблемными вопросами при разработке и специализации больших языковых 
моделей (Large Language Model — LLM, ) являются катастрофическое забывание, риск переобучения, 
галлюцинации, некорректная обработка исключительных ситуаций, а также исключительно высокие 
требования к производительности используемых при этом вычислительных средств. Целями исследова-
ния являются выбор и разработка методов оптимизации процесса обучения и настройки LLM, обеспе-
чивающих существенное снижение необходимых для этого вычислительных ресурсов. Для достижения 
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данной цели предложено использовать следующие методы оптимизации LLM и алгоритмов их обуче-
ния:  LoRA и QLoRA, Batch size choice (выбор оптимального размера пакета), Gradient Accumulation (на-
копление градиента), Gradient Checkpointing (контрольные точки градиента), Mixed precision training 
(смешанная точность), FlashAttention 2. Для получения кумулятивного положительного эффекта при 
совместном использовании этих методов необходимо выполнить ряд практических экспериментов. 
При настройке гиперпараметров обучения LLM сначала следует определить, какой размер пакета дает 
наилучшие результаты, а затем выбрать адекватные методы оптимизации используемых вычисли-
тельных ресурсов. Применение представленных методов позволит повысить эффективность исполь-
зования вычислительных ресурсов при настройке больших языковых моделей и обеспечит сокращение 
необходимых для этого временных и финансовых затрат. 

Ключевые слова: большая языковая модель, графический процессор, накопление градиента, смешанная 
точность, точная настройка LLM, Large Language Model, Low-Rank Adaptation
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