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Abstract. The main problematic issues in the development and specialization of LLM are: catastrophic
forgetting, the risk of overfitting, hallucinations, incorrect interpretations, incorrect processing of exceptional
situations as well as exceptionally high performance requirements for the computing tools used in this case.
The purpose of the study is to select and develop methods for optimizing the training and fine-tuning process
LLM, providing a significant reduction in the computing resources required for this. To achieve this goal, it is
proposed to use the following methods of optimizing LLMs and their learning algorithms: LoRA and QLoRA,
Batch size choice, Gradient Accumulation, Gradient Checkpoint, Mixed precision training, FlashAttention-2.
To obtain a cumulative positive effect when using these methods together, it is necessary to perform a number
of practical experiments. When setting up LLM learning hyperparameters, you should first determine which
package size gives the best results, and then choose adequate methods to optimize the computing resources
used. The application of the presented methods will increase the efficiency of using computing resources when
training and fine-tuning large language models and will reduce the time and financial costs necessary for this.

Keywords: fine-tuning, gradient accumulation, graphics processing unit, Large Language Model, Low-Rank
Adaptation, mixed precision

Introduction

The current stage of global development is handling of exceptional situations, ensuring the

characterized by the active introduction of artificial
intelligence technologies industry,
education and other spheres of economic and social
life, vivid examples of which are deep learning

into science,

methods and generative artificial intelligence. Large
language models (LLM) created with their help are
capable of processing and creating texts, understanding
and synthesizing speech, images, generating program
code, solving analytical, mathematical and other
non-trivial tasks. The main problematic issues in
the development and specialization of LLM are:
the risk of overfitting,

interpretations,

catastrophic forgetting,

hallucinations, incorrect correct

integrity of models, exceptionally high performance
requirements for computing tools used in LLM training.

This article discusses methods for optimizing the
training and fine-tuning process LLM, which ensure
a significant reduction in the computing resources
required for this with minimal loss of quality of the
created models.

Stages of development of specialized systems
based on large language models

The technological chain of the process of creating
specialized software systems based on large language
models includes three main stages: the development
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of a basic model, preliminary specialization and fine-
tuning to solve problems in a specific subject area.

At the initial stage, the model is trained on
unstructured and unlabeled data. The main data sources
that were used in the development of most modern
LLMs are: Wikipedia, Common Craw, BooksCorpus
(a collection of book texts), OpenWebText (a set of
articles from the Internet). The result is a basic general
purpose LLM. Examples of such models are GPT 4,
GPT 3.5, Claude2, Gemini, Falcon, Llama, T5 [1].

At the second stage, the LLM is finalized through
self-study on specially prepared data, which adjusts
the model to solve problems of a certain class. At the
third stage, such models undergo additional training
with reinforcement based on expert feedback (RLHF,
Reinforcement Learning from Human Feedback).
Such open-source LLMs as Llama, Vicuna 13B,
Mixtral 7B, TS5 can be used to create specialized
LLMs [1, 2]. As a result, domain-specific Al systems
are being created, designed to solve certain tasks in
specific areas of application.

LLM
performance computers, large amounts of RAM and

training and fine-tuning require high-
disk memory, and graphics processing unit — GPU.
During LLM training, GPU memory is used to store
model weights, optimizer states, gradients (parameter
derivatives), and direct activations stored to calculate
gradients. When calculating weight coefficients in fp32
format, 4 bytes of GPU memory are required per LLM
parameter. Thus, to load a model with three billion
parameters, 12 GB of memory (4 bytes x 3000000) will
be required. In addition, an additional 6 GB (2 bytes x
% 3000000) will be required to store the states of the
AdamW 8-bitoptimizer,and 12 GB of memory (4 bytes x
% 3000000) will be required to accommodate gradients.
Thus, it turns out that to train a model with three billion
parameters, at least 30 GB of RAM will be required.
The main characteristics of the GPU are: memory
capacity, performance on special floating-point tasks,
scalability, virtualization support, power consumption
and price. Depending on the characteristics, the cost
of the GPU varies from hundreds of thousands (4090
ADA 24 GB 3.5 Slot FP16 = 83 TFLOPS) to several
million rubles (H100 Hopper 80 GB, FP16 = 204.9
TFLOPS) [3, 4]. At the same time, according to

estimates [2], to train LLM with 3 billion parameters,
itis necessary to use 128 GPU A100 40 GB for 7 days.
Given that modern LLMs have tens and hundreds of
billions of parameters, it becomes obvious that there
is an urgent need to develop methods to optimize the
processes of their training, configuration and use.

The research task

In connection with the above, it becomes obvious
that there is an urgent need to develop and apply
less expensive methods and tools for training and
configuring LLM that can implement these processes
without significantly reducing the quality of the
intelligent systems created at the same time. The
following subsections of the article provide a brief
description of such methods and tools, as well as
suggestions for their optimal use.

Method for fine-tuning large language models

In order to reduce the performance requirements
of computing tools used in LLM training, methods
Parameter-Efficient Fine-Tuning (PEFT) have been
developed and are being used. A description of modern
methods and tools for fine-tuning LLM is presented in
[5-9]. The software implementation of these methods
is presented in the peft library on site huggingface.co.

Methods for fine-tuning effective LLM parameters,
unlike full model tuning, provide training for only
a small set of parameters (PEFT), which can be a
subset of existing model parameters or a set of added
parameters. Usage PEFT methods allows you to
reduce training time, reduce the cost of computing
and storing models, reduce the risks of overtraining,
overcome catastrophic forgetting, correctly handle
exceptional situations, and ensure ease of deployment
and transfer to other devices.

Currently, the most promising methods of fine
tuning are: LoRA (Low-Rank Adaptation) and
QLoRA (Quantization-Aware LoRA). The LoRa
method focuses on changing the weights of only
certain layers and parameters of the basic LLM,
focusing on those that are most useful for solving
problems of this class. This is achieved by applying
matrices with significantly lower rank than the
matrices of the basic model to adjust the weights.
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LoRa applies only to transformer query and value
matrices, which means that the multilayer perceptron
is frozen and only attention weights are adapted.
The loss function is optimized by passing the
gradient through the frozen model to the adapters.
The formula describing the LoRA method in tensor
notation has the following form:
W0+ AW = W0+ BA,

where W0 is the weight matrix of the pre-trained
model;

AW is the updated and added weight coefficients

during the adaptation of the original model;

A€Rr xk is a matrix of size r xk, the elements

of which are random variables corresponding to

the normal distribution law N(u, ¢°), where u = 0

(the average value of the value), ¢ is the standard

deviation; Be Rd X r is a matrix of size d X r, the

elements of which are assigned zeros at the initial
stage of training.

An important advantage of LoRa is the ability to
use the same model for different tasks by replacing the
weights in matrices A and B, reducing the amount of
memory needed to store different models.

The QLoRA method (LoRA with quantization)
is designed to deploy models in environments with
limited resources. It allows you to significantly
reduce the requirements for the necessary amounts
and performance of GPU and CPU, as well as
computing power, for deploying and configuring
QLoRA is a modification of the LoRA
method by quantifying the model parameters, i.e.

models.

reducing the accuracy of the weighting coefficients,

while maintaining the necessary correctness and
performance.

The number of parameters is determined by the
rank and shape of the original weights. In practice,
trainable parameters vary as low as 0.1 % to 1 % of all
the parameters. As the number of parameters needing
fine-tuning decreases, the size of gradients and
optimizer states attached to them decrease accordingly.
Thus, the overall size of the loaded model reduces. For
example, the Llama 2 7B model parameters could be
loaded in int8 (1 byte), with 1 GB trainable parameters
loaded in fp16 (2 bytes). Hence, the size of the gradient
(fp16), optimizer states (fp32), and activations (fp32)
aggregates to approximately 7-9 GB. This brings the
total size of the loaded model to be fine-tuned to 15—
17 GB, as illustrated in Fig. 1.

Thus, thanks to the use of LoRA, it was possible to
reduce the amount of memory required to configure
Llama 2 7B by 4 times.

Methods for optimizing the learning process and
configuring large language models

In order to increase the efficiency of using
computing resources when training large language
models to solve problems in a certain subject area, the
following approaches and methods are currently used:
Gradient Accumulation, Gradient Checkpoint, Mixed
precision training, FlashAttention-2 [10—12].

The Gradient Accumulation method provides
the calculation of gradients in smaller increments
instead of calculating them for the entire batch at
once. Iterative calculation of gradients is performed
in small batches by performing forward and reverse

7B model
params (int 8) LoRA params
71=7GB (fp16)
~1GB

Gradients (fp16)
~1GB

BOE880aU

Optlmlzer states (fp32)

~4GB

N —

Activation (fp32) Free memory
~2t04GB ~23t025GB

Fig. 1. Schematic showing an example of memory footprint of LoRA fine tuning with Llama 2 7B model

Intellectual Technologies on Transport. 2024. No. 3



UckycemeeHHbIU UHMennekm u MauwuHHoe oby4yeHue

passes through the model and accumulating gradients
in the process. Once a sufficient number of gradients
have been accumulated, the model is optimized.
Using this method, the effective packet size can be
increased beyond the limits imposed by the amount
of memory of the GPU. At the same time, it should
be borne in mind that additional passes forward and
backward, implemented in the process of gradient
accumulation, can slow down the learning process. To
use this method when training a model, the gradient
accumulation_steps argument must be included in the
TrainingArguments configuration file:

training args = TrainingArguments(per_device
train_batch_size=1, gradient accumulation steps=4,
**default _args)

Using the “Gradient Accumulation” method allows
you to maximize the use of GPU resources. Examples
and results of the application of the “gradient
accumulation” method are presented in [12].

To save all forward pass activations, significant
amounts of memory must be allocated to calculate
gradients during the reverse pass. If you do not save the
activations, then their re-calculation during the reverse
passage through the graph of the model will lead to
significant computational costs and slow down the
learning process. The “Gradient Checkpointing” method
offers a compromise between these two approaches and
preserves strategically important activations for the
entire computational graph at certain control points.
Due to this, only a part of the activations needs to be
calculated again. To use this method, the “gradient
checkpointing=True” argument must be included in the
TrainingArguments configuration file. The use of this
method increases the efficiency of memory usage, but
slows down learning by about 20 % [12].

Using the “Mixed precision training” method, the
efficiency of the model training process is increased
by using lower precision numerical formats for certain
variables. Most models use 32-bit floating-point precision
(fp32 or float32) to represent and process variables.

However, not all variables require such a high level
of accuracy to achieve good results. By reducing the
precision of some variables, for example, to 16-bit
floating point values (fp16 or float16), calculations can
be accelerated. The main advantage of mixed-precision

learning is the storage of half-precision activations
(fp16). Although gradients are also calculated with
half accuracy, they are converted back to full accuracy
during the optimization stage. Therefore, there is no
memory saving in this case.

Thus, learning with mixed accuracy, on the one
hand, leads to faster calculations, and on the other
hand, it can lead to an increase in the amount of GPU
memory used, especially with small packet sizes.
This is due to the fact that the model is now present
on the GPU with both 16-bit and 32-bit precision, i.e.
1.5 times more than the original model. The scheme
of the algorithm mixed precision method, used for
calculating LLM parameters is shown in Fig. 2.

PIN fp32]

v

Cast FP32 to FP16

v

Forward FP16

v

Loss FP32

v
FP16 * loss scale
v

Backward FP16
| (gradient FP16 —grs)

v

Optimize FP32
(weight update)
(W32 = wsz2+n *gris)

Cast FP32 to FP16
v

FP16 [ loss scale

gradient FP16
overflow?

Fig. 2. Scheme of the algorithm mixed precision method
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The parameters P[Ngps,] received at the input of
the algorithm in FP32 format are converted to FP16
format. The loss level is set to FP32. During backward
computation, the value is multiplied by the loss scale to
avoid overflow due to a small gradient value. A parameter
in FP16 format is used to calculate the gradient, and the
result is converted to FP32. Then the value is divided
by the loss scale to restore the multiplied gradient. The
optimizer checks if the gradient is overflowing. If yes,
the optimizer skips the update. If not, the optimizer
uses FP32 to update the initial parameters. To use the
mixed precision method, you must set the “fp16=True”
parameter in the 7raining Arguments configuration file.

FlashAttention-2 is a faster and more efficient
implementation of the standard attention mechanism,
which can significantly speed up logical inference due to:

* additional parallelization of attention calculations
along the length of the sequence;

+ separation of work between GPU threads to
reduce data exchange and read/write operations in
shared memory between them.

FlashAttention-2 can only be used if the model format
is fp16 or bf16. To use the FlashAttention-2 method, the
“attn_implementation="flash_attention_2"" parameter
must be included in the model description. FlashAtten-
tion-2 can be combined with other optimization methods
such as quantization. Below is an example of using this
method in combination with 8-bit quantization:

# load in 8bit

model = AutoModelForCausalLM.from_pretrained

(model_id,

load in_8bit=True,

attn_implementation‘‘flash_attention 2”)

Reducing the requirements for the amount of
GPU memory required for LLM training can be
achieved by choosing the optimal optimizer. Below
are the GPU memory requirements required by three
different optimizers when learning LLM with 3 billion
parameters [10]:

» the standard AdamW optimizer will require
24 GB of GPU memory, since 8 bytes are used for
each parameter (8*3 => 24 GB);

+ adafactor optimizer will require more than
12 GB, because a little more than 4 bytes are used for
each parameter;

* an 8-bit quantized BNB optimizer will use
only (2*3) 6 GB if all the states of the optimizer are
quantized.

Adafactor does not store moving averages for
each element in weighting matrices. Instead, it stores
aggregated information (sums of moving averages by
rows and columns), which significantly reduces the
memory used.

However, compared to Adam, Adamfactor may have
slower convergence in some cases. Which optimizer
will be used is determined in the 7rainingArguments
configuration file using the “optim=“adafactor””
parameter.

In combination with other approaches (gradient
accumulation, gradient checkpoint detection, and
training with mixed accuracy), you can get a three-
fold reduction in the size of the required memory
while maintaining bandwidth. However, as mentioned
earlier, the convergence coefficient of Adafactor may
be worse than Adam.

An example of program implementing
a learning cycle of a large language model

This section provides an example of a program that
uses the methods described above to training basic LLM
using the functions of the Accelerate library of the Pytorch
framework. The configuration file includes a description
of the following parameters of the learning process:

training _args = TrainingArguments

(per_device train_batch_size=1,

gradient_accumulation_steps=4,

gradient _checkpointing=True

fpl16=True,

**default_args)

A fragment of a program that implements a learning
cycle using the Accelerator module:

from accelerate import Accelerator

from torch.utils.data.dataloader import DataLoader

dataloader = DataLoader(ds, batch
size=training_args.per_device_train_batch_size)

if training_args.gradient_checkpointing:

model.gradient_checkpointing enable()

accelerator = Accelerator(fpl6=training_args.fp16)

model, optimizer, dataloader = accelerator.
prepare(model, adam_bnb_optim, dataloader)
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First, we load the training dataset using the
Datal.oader data loader. To optimize the learning
process of the model,
checkpointing_enable() method and

we use the gradient
the mixed
precision learning mode — fp16. In the call to the
prepare method, it is determined that the data loader
will be distributed between processes if we use several
GPUs, and the 8-bit adam bnb optim optimizer
will be used for training. Below is a fragment of the
program that implements the main learning cycle:
model.train ()

for step, batch in enumerate (dataloader, start=1):

loss = model(**batch).loss

loss = loss / training_args.gradient accumulation
steps

accelerator.backward(loss)

if step % training args. gradient _accumulation_
steps ==

optimizer.step()

optimizer.zero_grad()

Step is the number of accumulation steps, batch is
the batch size assigned in the dataloader. The error back
propagation method is performed using the accelerator
Sfunction.backward(loss).
performed as follows: we normalize the losses, get
the average value at the end of accumulation, and as
soon as we have enough steps, we start the model
learning process — optimizing the model weights using
the optimizer.step(). Optimizer method.zero _grad() —
resets the gradients of all optimized tensors (weight
coefficients).

The methods discussed in this article allow you to
reduce the learning time and increases efficiency the

Gradient accumulation is

use of GPU and CPU. To obtain a cumulative positive
effect when using these methods together, it is necessary
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Annomauus. OCHOBHbIMU NPOOIEMHBIMU BONPOCAMU NPU PA3PAOOMKEe U CREYUATUZAYUU OOTLUUUX SI3bIKOBBIX
mooeneu (Large Language Model — LLM, ) sagraiomcsa kamacmpoguueckoe 3a0vi8anue, puck nepeodoyuenuis,
2ANLIOYUHAYUY, HEKOPPEKMHAsL 00pAOOMKA UCKTIOUUMETbHBIX CUMYAYUL, d MAKICe UCKIIOUUMENbHO 8bICOKUE
mpebosanus K NPOU3800UMENbHOCHIU UCHOTb3YEeMbIX NPU SMOM BbIYUCIUMENbHbIX cpedcms. Llenamu ucciedosa-
HUSL SGTSLIOMCSL 8b1O0P U PA3PaAbOMKA Memooo8 OnmuMu3ayuy npoyecca ooyuenus u Hacmpouku LLM, o6ecne-
YUBAIOWUX CYUJECMBEHHOE CHUIICEHUE HeODXOOUMBIX O/l IMO20 BbIUUCTUMENbHBIX pecypcos. [lna docmudicenus
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OAaHHOU Yenu npedsiodHceHo UCNONb308aMb cledyiowue memoovl onmumuzayuu LLM u ancopummos ux obyue-
Husa: LoRA u QLoRA, Batch size choice (8bi60p onmumanvroeo pasmepa nakema), Gradient Accumulation (na-
konnenue epaouenma), Gradient Checkpointing (konmponvhvie mouku epaouenma), Mixed precision training
(cmewannas mounocms), FlashAttention 2. J[ns nonyyeHus KymyaismueHo20 NOI0NCUMENbHO20 dhdexma npu
COBMECHOM UCNONb30BAHUU IMUX MEMOO08 HEeOOXO0OUMO BbINOIHUMb PSAO NPAKMUYECKUX IKCNEPUMEHNO8.
IIpu nacmpotixe cunepnapamempos o6yyenus LLM cnauana credyem onpedenums, Kakou pazmep nakema oaem
Hauyyuiue pe3yibmamsl, d 3amem 6blopams adeKeammuvie Memoobl ONMUMUZAYUU UCTOTbIYEMbIX BbIUUCTU-
menvHbix pecypcos. Ilpumenenue npedcmagienubix Memooos no360NUm noswviCums 3hHeKmueHoCmsb UCNONb-
308aHUSL GIYUCTUMETLHBIX PECYPCO8 NPU HACMPOUKe DONbULUX AZBIKOGLIX MoOelell U obecneuum CoKpaujeHue
He0OX00UMbIX 0I5l MO0 BPEMEHHBIX U (PUHAHCOBBIX 3amMpam.

Knrouesvie cnosa: 6onvuias s1361k06as Mooenn, epapuyeckuil npoyeccop, HaKonieHue paouenma, CMeuanHas
mournocmuv, mounas nacmpotixa LLM, Large Language Model, Low-Rank Adaptation
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