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Аннотация. Традиционные системы навигации беспилотных летательных аппаратов полагаются 
на GPS-сигнал, который подвержен подавлению или фальсификации в условиях радиоэлектронной борь-
бы, плотной городской застройки или естественных помех, что приводит к потере ориентации, срыву 
задач и возможной утрате аппарата. Визуальная навигация на основе камер и алгоритмов обработки 
изображений предлагает альтернативу, но сталкивается с вызовами в динамичных средах без спутни-
ковых сигналов. Цель: провести анализ эволюции методов визуальной навигации БПЛА при отсутствии 
GPS-сигнала, включая обзор ключевых технологий, их интеграцию с инерциальными системами и искус-
ственным интеллектом, а также оценить преимущества, вызовы и перспективы применения методов 
визуальной навигации с акцентом на коллаборативные подходы в многоагентных системах. Результа-
ты: выявлен рост интереса к визуальной навигации с фокусом на VSLAM — для оценки апостериорной 
вероятности траектории и карты, визуальной одометрии — для минимизации репроекционной ошиб-
ки, многосенсорной фузии через расширенный фильтр Калмана — для обеспечения метровой точности 
в сложных средах. Интеграция ИИ, включая сверточные нейронные сети, повышает устойчивость к из-
менениям освещения и обеспечивает адаптацию к различным ситуациям в реальном времени. В многоа-
гентных системах кооперативные модели SLAM с матрицами корреспонденций между картами агентов 
снижают среднеквадратичную ошибку позиционирования до одного метра в симуляциях, даже при пре-
рывистой связи и потере сигнала GPS. Практическая значимость: результаты позволяют повысить 
автономность БПЛА в сценариях без GPS, включая поисково-спасательные операции в урбанизирован-
ных зонах, мониторинг сельскохозяйственных угодий, экологический контроль и различные задачи с воз-
можностью применения средств радиоэлектронной борьбы, обеспечивая координированные действия 
групп БПЛА для эффективного покрытия территории и минимизации рисков при выполнении задач.

Ключевые слова: визуальная навигация, БПЛА, среды без GPS-сигнала, одновременная локализация 
и построение карты, многоагентные технологии

1.2.1 — искусственный интеллект и машинное обучение (технические науки); 1.2.2 — математическое 
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лиз, управление и обработка информации, статистика (технические науки)
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Введение
Беспилотные летательные аппараты (БПЛА) 

широко применяются в различных сферах, вклю-
чая мониторинг окружающей среды, поисково-
спасательные операции, сельскохозяйственные 
работы и т. д., обеспечивая выполнение задач без 
непосредственного участия человека. Традицион-
ные системы навигации, основанные на  глобаль-
ной позиционной системе (GPS), уязвимы для 
электронного противодействия, например пода-
вления или фальсификации сигнала. В  условиях, 
где средства радиоэлектронной борьбы (РЭБ) или 
естественные помехи (например, в плотной город-
ской застройке или под землей) приводят к потере 
GPS-сигнала, БПЛА рискуют потерять ориента-
цию, что может привести к срыву выполнения за-
дачи или к потере аппарата.

Визуальная навигация, базирующаяся на  каме-
рах и алгоритмах обработки изображений, представ-
ляет собой эффективную альтернативу, позволяю-
щую БПЛА определять положение по визуальным 
ориентирам окружающей среды. Данная технология 
приобретает особую актуальность в  сценариях без 
GPS-сигнала, способствуя повышению автономно-
сти аппаратов. Согласно обзорам, развитие визуаль-
ных систем навигации стимулируется интеграцией 
с искусственным интеллектом (ИИ) и многосенсор-
ными подходами [1]. Целью статьи является анализ 
эволюции этих систем, их интеграции в платформы 
БПЛА, анализ перспектив развития, в том числе кол-
лаборация с многоагентным подходом.

Обзор литературы
Анализ научных публикаций свидетельству-

ет о  растущем интересе к  визуальной навигации 
БПЛА в  средах без GPS-сигнала. В  русскоязыч-
ных источниках подчеркивается роль ИИ в опти-
мизации алгоритмов, обеспечивающих автоном-
ное преодоление препятствий и  корректировку 
траектории на основе визуальных данных [2]. Раз-
работки акцентируют внимание на  интеграциях 
с  другими системами для обеспечения контроля 
в удаленных зонах, включая сценарии с подавлен-
ным GPS-сигналом, такие как городские операции 
или арктические исследования [3].

Ключевые работы описывают методики сопо-
ставления ключевых точек на  изображениях для 
определения положения БПЛА без GPS с исполь-
зованием алгоритмов компьютерного зрения [2]. 
Другие исследования фокусируются на  визуаль-
ной навигации групп БПЛА по маркерам в услови-
ях отсутствия спутниковых сигналов [4]. Обсуж-
даются такие методы, как визуальная одометрия 
и одновременная локализация и построение карты 
(Simultaneous Localization And Mapping, SLAM) 
для автономного перемещения в  сложных средах 
с  интеграцией инерциальных систем для повы-
шения надежности [5]. В  международных обзо-
рах подчеркивается эволюция от  монокулярных 
систем к  многосенсорным с  акцентом на  вызовы 
в средах без GPS-сигнала [1, 5].

Ключевые технологии визуальной 
навигации

Визуальная навигация БПЛА опирается на ком-
плекс компонентов, обеспечивающих точное опре-
деление положения и  траектории при отсутствии 
GPS-сигнала. Рассмотрим основные технологии.

1.	 Сенсорная база. Монокулярные, стере-
оскопические или камеры с датчиками глуби-
ны дополняются лидарами или радарами для 
многосенсорной фузии (объединения)  данных.  
В  конфигурациях БПЛА предпочтительны ком-
пактные камеры высокого разрешения с инфра-
красным диапазоном для проведения операций 
в  условиях низкой освещенности. Интеграция 
с  инерциальными измерительными устройства-
ми (IMU) компенсирует вибрации и  ускорения, 
как показано в работах по навигации БПЛА без 
спутниковых сигналов [5].

2.	 Алгоритмы обработки изображений. 
Центральной технологией выступает визуальная 
одновременная локализация и  построение кар-
ты (VSLAM), где ключевые точки извлекаются 
из  последовательных кадров и  сопоставляются 
для расчета перемещения. Математическая основа 
VSLAM часто формулируется как задача оценки 
апостериорной вероятности траектории x1:t и кар-
ты m по наблюдениям z1:t и управляющим сигналам 
u1:t [6]:
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где ( ) 1 | , k k kp x x u−  — модель движения;
( ) | , k kp z x m  — модель наблюдений.

Алгоритмы обеспечивают точность в динамичных 
средах, устойчивость к изменениям освещения и ин-
теграцию с ИИ для семантической сегментации [5]. 
Визуальная одометрия оценивает относительное 
перемещение на  основе последовательностей изо-
бражений, часто комбинируясь с  IMU в  системах 
с  визуально-инерциальной одометрией для мини-
мизации дрейфа. Математически это сводится к ми-
нимизации репроекционной ошибки [5]:
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где R — матрица поворота;

t — вектор трансляции;
pi и qi — сопоставленные точки в двух кадрах;
K — матрица калибровки камеры;
π — функция проекции.
Применение этих методов в  открытых про-

странствах, включая леса и  урбанизированные 
зоны, с фокусом на устойчивость к внешним фак-
торам демонстрируется в [7].

3.	 Интеграция с  ИИ и  машинным обуче-
нием. Нейронные сети, например сверточные, 
используются для предсказания траекторий, рас-
познавания ориентиров и  адаптации к  изменяю-
щимся условиям. В системах ИИ обеспечивается 
навигация без GPS путем анализа визуальных дан-
ных в реальном времени, что критично для авто-
номных задач [5]. Глубокое обучение повышает 
точность в  сценариях без спутникового сигнала, 
включая использование нейроморфных камер для 
имитации биологического зрения [1].

4.	 Многосенсорная фузия. Визуальная нави-
гация комбинируется с  инерциальными, бароме-
трическими или магнитными методами навигации 
для повышения надежности и точности определе-
ния местоположения БПЛА. Гибридные системы 
используют маркеры для коррекции в  крупных 
структурах, достигая метровой точности. Мате-

матическая основа фузии часто реализуется через 
расширенный фильтр Калмана (EKF), где состоя-
ние 1ˆk kx −|
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где f и h — функции перехода и измерений;
Fk и Hk — их якобианы;
Qk и Rk — ковариационные матрицы шумов.
Обзоры подчеркивают преимущества фузии 

для БПЛА в сложных средах, таких как подземные 
помещения или мостовые конструкции [5].

В бортовых системах эти технологии интегри-
руются в автопилоты, обеспечивая плавный пере-
ход к визуальной навигации при отсутствии GPS-
сигнала.

Применение в различных областях
Визуальная навигация повышает автономность 

БПЛА, делая их устойчивыми к помехам. Ключе-
вые сценарии включают:

1.	 Мониторинг и  поисково-спасательные 
операции. В  урбанизированных или природных 
зонах БПЛА используют визуальное распознава-
ние для поиска объектов, опираясь на оптические 
данные без GPS-сигнала [5]. Это актуально для 
чрезвычайных ситуаций, где требуется быстрая 
корректировка траектории.

2.	 Сельскохозяйственные и  экологические 
задачи. Автономная визуальная навигация по-
зволяет отслеживать посевы или лесные массивы 
в зонах с подавленным сигналом, повышая эффек-
тивность выполнения задач [1].

Во всех областях соблюдаются строгие стандар-
ты безопасности, включая защиту от киберугроз.

Вызовы и перспективы развития
Несмотря на  достижения, визуальная навига-

ция сталкивается с ограничениями:
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1.	 Вычислительная сложность. Обработка 
большого объема визуальной информации в  ре-
альном времени требует значительных ресурсов, 
увеличивая массу и  энергопотребление БПЛА. 
Решения данной проблемы включают краевые вы-
числения с графическими процессорами [1].

2.	 Устойчивость к  внешним факторам. Ва-
риации освещения, погоды или динамики влияют 
на точность определения местоположения, в случае 
сильного изменения ландшафта возможна потеря 
управления БПЛА. Перспективы развития связаны 
с гибридными системами ИИ для адаптации к слож-
ным погодным условиям [5]. Одним из  частных 
решений данной проблемы является коллаборация 
методов визуальной навигации с методами много-
агентного управления группами БПЛА.

Коллаборативная визуальная навигация 
в многоагентных системах

Перспективным направлением является переход 
от одиночного автономного управления отдельны-
ми БПЛА к многоагентному групповому управле-
нию (роям БПЛА), где автономные агенты обмени-
ваются данными для коллективной локализации. 
В сценарии, когда один БПЛА из-за внешних фак-
торов не может определить опорные точки в зоне 
видимости, другие агенты, успешно выполнившие 
VSLAM, передают корректирующие данные о ко-
ординатах и карте. Это позволяет рою решать зада-
чу навигации в условиях потери GPS-сигнала, воз-
действия РЭБ или в сложных погодных условиях 
за счет распределенной одновременной локализа-
ции и построения карты. Математическая модель 
такой системы может быть расширена на  основе 
стандартной одновременной локализации и  по-
строения карты, включая совместную оценку со-
стояний агентов ( )

1:  i
tx  для N БПЛА [6]:
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где m(i) — локальная карта i-го агента;
c  — матрица корреспонденций между карта-
ми для фузии (например, через сопоставление 
ключевых точек).

При прерывистой связи используются децен-
трализованные протоколы (например, на  базе 
сетей с  ячеистой топологией), где агенты хранят 
кэш данных и синхронизируют карты при восста-
новлении связи. Такие модели уже тестируются 
в симуляциях и прототипах, но требуют решения 
проблем с задержками и энергопотреблением [7]. 
В  экспериментах с  двумя квадрокоптерами в  си-
мулированной среде кооперативная система обе-
спечила ограничение ошибок положения (средне-
квадратичная ошибка около 0,5 м по оси x) даже 
при увеличении высоты, в  то время как одиноч-
ные конфигурации показывали рост ошибок до 
2–3 м [6]. В реальных тестах в лесной местности 
система позволила менее оснащенному БПЛА 
преодолевать расстояния 31–41 м с успешностью 
100 % [7]. В другом исследовании с тремя конфи-
гурациями кооперативной одновременной локали-
зации и построения карты в симуляции достигнута 
среднеквадратичная ошибка положения менее 1 м 
в сценариях без GPS-сигнала [8].

Будущие направления развития предусматрива-
ют интеграцию VSLAM с квантовыми сенсорами 
и  интеллектом роя для совместного построения 
карт. Прогнозируется, что к 2030 году визуальная 
навигация станет стандартом для большинства 
БПЛА [1].

Заключение
Визуальная навигация для беспилотных лета-

тельных аппаратов в  условиях отсутствия GPS-
сигнала является ключевым направлением, по-
вышающим автономность и  надежность систем 
в  сложных средах. Современные технологии, та-
кие как визуальная одновременная локализация 
и  построение карты, визуальная одометрия, мно-
госенсорная фузия и интеграция с искусственным 
интеллектом, позволяют БПЛА ориентироваться 
по визуальным ориентирам, обеспечивая точность 
в  урбанизированных зонах, лесах и  подземных 
структурах. Эти методы применяются в  монито-
ринге окружающей среды, поисково-спасательных 
операциях, сельском хозяйстве и других задачах.

Особое значение имеет коллаборативная визу-
альная навигация в  многоагентных системах, где 

29Intellectual Technologies on Transport. 2025. No. 4

Artificial Intelligence and Transport Systems



агенты обмениваются данными для коллективной 
локализации. В  сценариях с  потерей видимости 
опорных точек один БПЛА может получать кор-
ректировки от других, используя расширенные мо-
дели SLAM с матрицами корреспонденций между 
картами. Это минимизирует ошибки позициони-
рования даже при прерывистой связи благодаря 
децентрализованным протоколам и кэшированию 
данных.

Несмотря на  преимущества, остаются вызо-
вы: вычислительная сложность, влияние внешних 
факторов (освещение, погода). Перспективы вклю-
чают интеграцию ИИ для адаптации, квантовых 
сенсоров и интеллекта роя. Дальнейшие исследо-
вания фокусируются на оптимизации и безопасно-
сти для полного раскрытия потенциала.
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