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AHHOTanus. [Ipeocmasneno uccieoosanue o eapuanme npumeHeHus OOILUUX AZbIKOGLIX MoOenell 015 6epu-
Qukayuu npocpammuoco obecneuenus. Ilenv: cozoanue cucmemsvi 0 agmomamuyeckol eepugurayu npo-
2pamMmno20 obecneuenus 3a0aHHblM mpebosanusam. [l O0CMudiCeHUs yeau UCNONb3068aHbl UHPOPMAYUOHHBLE
mexHonocuu, PopmManrbHas eepugurayus, UCKYCCMBEHHbLL UHMENLIeKm U Opyeue UHHOBAYUOHHbIE NOOXO0ObL.
Memoowi: ananuz co8pemeHHbIX UHCIMPYMEHmMOo8 1 mexnono2uti oaa eepuguxayuu 110, exkniovas cywecmey-
rowue uncmpymenmol. Pe3ynemamot: nokazvieaiom cuibHvle u ciadvlie CmopoHvl NpUMeHeHus. OONbUUX A3bl-
Kosbix mooeneti 01a eepuguxayuu 110. Ilpakmuueckan 3HAUUMOCHb: 3aKIIOYAEMCS 8 NOBbIULEHUU KaYyecmed
u naoedxcrnocmu I10. Hccnedosanue umeem 6asicHoe sHavenue Oas pazeumus mexHoI02Ull Hceie3H000PONHCHO2O
MPAHCNOPMA U NOBbIULEHUS. HAOEHCHOCIU pabombl uH@opmayuonHvlx cucmem. QbcyrcoeHue: 8biCKa3vl8aom-
Csl peKOMEeHOayuu no OaibHeuuemMy cOBEPUEHCMBOBAHUIO NPEOTONCEHHOL CUCIeMbl 8epuduKrayuu, oceewa-
10MCsL 6ONPOCHI, Mpedyiowue OATbHeUUUX UCCIe008aHUL U PA3PAOOMOK.

KuaroueBble cioBa: bonvuiue A3v1ko8bie Mooenu, popmanvras eepugurayus, agmomamusayus cneyupurayuil,
Java Modeling Language, uckyccmeennbwlii unmesniexkm

1.2.1 — uckyccmeennwlii unmeniekm u mawunnoe ooyuenue (mexnuveckue nayku), 2.3.1 — cucmemnvlii ana-
JU3, ynpaeienue u 0opabomxka uHgopmayuu (mexHuieckue HayKiu)

BBenenue

@opmasbHbIe SI3bIKM cHENU(UKALUY, TaKue Kak
Java Modeling Language (JML) [1], ctanu He3aMeHU-
MBIMH 151 crielu(uKanuy U BepuHKaluu MOBeJe-
HUs Java-iporpaMMm. OTH MHCTPYMEHTHI MO3BOJISIOT
pa3paboTunKaM MOIYITbHO ONPEAEIATh MpPeaBapH-
TEJIbHBIE YCJIOBUS, MOCIEAYIOUINE YCIOBUS, HHBAPH-
aHTBI U YCJIOBHS KaJpa, YT0 OOBIYHO HA3bIBAETCS MPO-
eKTHpPOBaHHEM IO KOHTpakTy. B Hacrosiiee Bpems
UCTIONIB3YIOTCS JIeAyKTHBHAs BepuuKauus (C Hc-

MOJIH30BAaHUEM JIOKA3aTeIbCTBA TEOPEM M CHMBOJIBHO-
TO BBITIOJIHEHHSI), OTPAHUYCHHAs MTPOBEPKa Mojenen
(Ha OCHOBE T€OPHIA BHIMIOJIHUMOCTH (DOPMYJT) U HOBBIC
THOPHUIHBIE METO/IBI, BKITFOUAIOIIHE MAITUHHOE 00yUe-
HUE JJI1 aBTOMATHU3aIllUN TCHEPALH CIieIU(UKAITAiL.
Opnako pyuHoe co3manue aHHotaumii JML sB-
JSIETCSL  CJIOKHBIM, TPYJOEMKHUM U TIOIBEPKCHHBIM
omubOkam mporieccoM. IlosBnenne momubx LLM
(aarn. Large Language Model — OGonbinas si3bIKO-
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Basg Mojenb, bSM) OTKpbBUIO HOBbIE BO3MOKHOCTH
JUTSl aBTOMAaTU3aIMK TeHepauu crenudukanuii JML.
Unrerpanus bAM ¢ popmanbHBIME METOAAMH MOKET
CHU3UTh TPYAOEMKOCTb PyYHOU pabOThl U MOBBICUTD
HaJEKHOCTh IpPOrpaMMHOro obecrieueHus. Tem He
MEHEE OCTaITCS CIEAYIOIUE TPOOIEeMBbI:

* 3aBHCHMOCTH OT KOHTekcTa — bM moryt ymy-
CKaTh U3 BUJly CEMAHTUKY KO/a, HallpuMep M0OOYHbIE
3¢ (deKTh METOIOB;

* cuHTaKkcudyeckue ommoku — BSIM MmoryT rene-
pypoBarh kox, HecoBMecTumblii ¢ JML. Mogenu re-
Hepalu Kofa TPeOyIOT JOMOTHUTEBHOW HACTPONKH,
MTOCKOJIBKY JIJIsl TOYHOW TeHepaInuy aHHOTAIni Heo00Xo-
JIMMEBI 0osiee 00beMHBIE 00yJaroIre HaOOPhI TaHHBIX;

* CEMAHTHUYECKasl HECONIACOBAHHOCTh — aBTOMa-
TUYECKHU CTEHEPUPOBAHHBIE KOHTPAKTHI MOTYT MPOTH-
BOPEUUTH MPEANONIAraeMom JIOTUKE NPUIT0KEHUSI.

Otu npobieMbl MOAPBIBAIOT JOBEPHE K aBTOMATH-
3UPOBAHHBIM PELICHUSIM W OTPaHUYMBAIOT UX MPH-
MEHHMMOCTh Ha MpakThke. B pesynbrare uzyueHue
BO3MOXkHOCTeH uHTerpauuu bJAM ¢ cumBOIBHOM Be-
pudukanueit Oyner UMeTh OONbIIOE 3HAUCHUE TS
CHIDKEHUS pabouel Harpy3Ku Mpu BepupHUKAIH IPO-
rpaMMHOTO 00ecIieueHus ¥ MOBBIIIEHUS KauyecTBa I10-
Jy4aeMOro IpOrpaMMHOI0 00ecrieyeHusl.

COOTBETCTBEHHO, LIEJIb UCCIIEIOBAHUS 3aKIII0UACT-
Csl B U3yUYE€HHUH TOYHOCTHU IeHepalunuu anHoTauuii JML
C UCIOJIb30BaHUEM «HEOOJBINX) SI3BIKOBBIX MOJIEIIEH
(mo 10 mnpa mapamMeTpoB) M OILIGHKE BO3MOXKHOCTH
UX WCIONB30BaHMs 0€3 JONMOJHUTENbHOW TOHKOM Ha-
CTPOWKH Ha MpUMepax Koja ¢ CyIIECTBYIOIIUMH aHHO-
Tauusmu JML.

Jnst mocTrkeHus: nenu Obutn chopMynupoBaHbI
CIIEIYIOLIHUE 3a1a4HU:

* IOATOTOBUTH TECTOBbIE MPHUMEPHI AJS IeHepa-
muu agHoTanuii JML;

* CreHepHpOBaTh AHHOTALMH U IPOBEPUTH UX;

* coOparh CTaTUCTUKY BBITIOJHEHUS U MTPOAHAIIH-
3MpOBATh KAUECTBO aHHOTALIUH.

CymecTByl0IIHe IOAX0bI K TeHepauuu
JML-cnenupuranui

TpaguIMOHHO MCIIONB30BATINCH HIA0JIOHHBIE Me-
Tozbl (Hanpumep, Houdini) 1 MHCTpyMEHTHI BbIBOAA
WHBAapHAHTOB Ha OCHOBE TeCTOB (Hampumep, Daikon).

Onu 3¢ dexkTuBHO paboTaIOT I MPOCTHIX crienudu-
Kalui, HO TUIOXO OMMUCHIBAIOT CJIOXKHYIO CEMaHTHKY
KPYIHBIX Java-nporpaMmm.

Hogetimue LLM-meronuku, Hanpumep SpecGen,
UCHOJBb3YIOT OOJIBIINE MOJENH JUIsl TOHUMAaHUs KOH-
TekcTa Koma | TeHepanuu JML-cnenudukanuii.
OOGBIYHO TIPUMEHSIETCSI HEOOBIIIOE KOJIUYECTBO MPH-
MEpOB, M 3aT€M CIEeHU(PHUKALUU YTOYHSIOTCS 10 pe-
3yJabTaTaM IPOBEPKH; UCHOJIB3YIOTCS MyTallud U IB-
puctuku otoopa [2, 3].

['mOpuHBIE TOAXOIBI HHTETPUPYIOT CTAaTHUECKUIH
anamm3 U NLP-MeTonp! 1T aBTOMaTHYECKOTO U3BIIE-
YeHHs TPEIUKATOB W OOOTaleHHs CrerupuKaui
(marmpumep, ipoekt DECODER): cratnueckwii aHa-
JIN3 TaeT HaJeKHbIE Mpeaukarbl, NLP — npenukars
W3 JIOKyMeHTaIuu [4].

JenyxtuBHas Bepu(UKAMS TEPEBOIUT AHHOTH-
pOBaHHBIE Java-niporpamMMBbl B JIOTHYECKUE (OPMYITHI;
JIOKA3aTeIbCTBO KOPPEKTHOCTH (DOpMyI ITOKa3bIBAET
KOppeKTHOCTh Kozma. Mucrpyment KeY — mnpumep
cpenbl Uisi MHTEPAaKTHUBHOTO JIOKa3aTelibCTBa C HC-
nonbs3oBaHueM Java Dynamic Logic [5, 6].

Meton BMC (Bounded Model Checking) uccneny-
€T IIPOCTPAHCTBO COCTOSHUI A0 3a/laHHOTO Mpejena,
pa3BopaurBas IUKJIBI U PEKYpPCHIO (PUKCHUPOBAHHOE
YUCTIO pa3 U mpoBepsisi cBoiicTBa SMT-pemarensimu.
[Tnroc — BBICOKasi aBTOMATU3aIUs U ObICTPhIE KOHTP-
pUMEpPbl, MUHYC — HETIOJIHOTA 32 MpeAesaMu IpaHu-
1Bl IpoBepku |7, 8].

LLM npumeHstoTCs sl aBTOMATU3aLUK CO3TaHUS
dopmanbHbIX cnienudukanuii. MyTupoBaHue U BpU-
CTHKH OTOOpa B COUETaHMU C BepUUKAIMEH Jal0T
yIIydIeHHbIe pe3ylbTaThl [9].

CoBMelieHrHE BBIBOJOB CTaTMYECKOIO aHajIu3a
u pesyabraroB NLP mo3BosseT momydath oOorarieH-
Hele JML-crierudukanum, uTepaTuBHas A0paboTKa
C yJacTHeM YeJIOBeKa MOBBIIIaeT KauyecTBo [4].

OavH M3 HOBEHIIMX NOAXOAOB YIYy4llaeT IeHe-
pauuio crenu@uKanuii 3a CYeT UCIOIB30BAHUS OIle-
paTtopoB MyTalM JUIS CO3MAHHS Pa3zHOOOPa3HBIX
BapMAHTOB — KaHAMIATOB. Kakaplii BapmaHT Tpo-
BEpsIETCsI, U DBPUCTHUECKAs CUCTEMa BHIOMpAET TOT,
KOTOPBIIl ¢ HaumOonbIIel BEPOSTHOCTBIO SBISETCS
npaBWiIbHBIM. Takoe B3aumojeiicTBue mexay bAM
u (hopmanpHON BepuUKaIuel 3HaYUTEIbHO IPEBOC-
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XOJIUT TPAAULIMOHHBIE CTATUYECKUE U OCHOBAHHBIE Ha
TecTax MeTo/Ibl, o0ecreunBas 0oiee BHICOKHE MoKa3a-
TEeJIM yCIEeTHOCTH pU Bajauaauuu [9].

IIpeanaraemslii MeTOX

[Ipennaraemplii METOA aBTOMAaTH3allMU TeHEPALIUU
u Bepudukanuu crerudukanuii JML cocrout u3 ye-
TBIPEX MOCIIEA0BATEIbHBIX 3TAIOB.

Ha mepBom »Tame reHepUpYIOTCS aHHOTAIWU.
BxomHbIM MaTepHranom sBIseTCS UCXOIHBIN KOJ| KJlac-
coB Java ¢ KOMMEHTapUsSIMHU Ha €CTECTBEHHOM SI3bIKE.
Ha sTom sTame ncnonb3yloTcsl JOKaJdbHO pa3BEpHY-
ThIE MOJIETTH C OTKPBITBIMU Becamu: Qwen2.5-coder,
CodeLlama n Deepseek-coder-v2 [10, 11].

CpaBHeHHE OCHOBHBIX ITapaMeTpOB MoJelneil npu-
BezZieHO B Ta0i. 1. Ocoboe BHUMaHUE yAeseTcs mapa-
MmeTpam (temneparypa 0,7, rmuHa koHTekcTa — 4096
TOKEHOB), KOTOpBIE TO3BOJSIOT JOCTHYHL OanmaHca
MEXTy KPeaTUBHOCTHIO M TOYHOCTBIO.

Ha Bropom »sTame mpoBOIMTCS CHHTaKCHYECKas
npoBepka. CreHeprpOBaHHbIE AHHOTAIIMU TPOBEPS-
IOTCS Ha HaJM4Me CHHTAKCMYECKHX OIIMOOK, THIIO-
rpadcKuX HECOOTBETCTBHI M KOH(MIMKTOB KOHTpPAaK-
TOB C TOMOIIbIO HMHCTpyMeHTa SpotBugs (Bepcus
4.8.3) [12]. KypHanbl OomMOOK 3aMUCBIBAIOTCS JIS
MOCJIEAYIOLIETO UCIIPABIICHUSI.

Ha tperbem stame — ¢QopmanbsHOll Bepuguka-
MU — creuuuKaluy J0JKHBI ObITh (POPMATIbHO
nposepensl B cpene OpenJML [13] (Bepcust 21-0.8)
C UCIOJIb30BaHUEM CUMBOJILHOTO BhINOMHEHUs 1 SMT
(Satisfiability Modulo Theories)-pemareneii (;rornue-
CKHX pemiareneil ¢ moaaepxkod teopwmii) (Z3). He-
yAadHble BepU(DUKAIIMH aHAIU3UPYIOTCS Ha MPEIMET
TaKWUX MPUYHH, KaK HEIOCTATOuHAas JeTaIH3amns KOH-
TPaKTa WM CEeMaHTHYECKUE HECOOTBETCTBUSI.

YeTBepThIii 3Tal — KIacCU(PUKAINS U HCTIPABICHHAE
omrOoK. CHHTaKcHYeCKHe OmMOKH OyIyT aBTOMAarH-
YECKH yAaJIeHbl CKPUIITAMH, & CEMAaHTHUECKHE OIUOKN
TpeOyIoT py4HOro BMellarenbcTBa. Pe3ynbrarsl 3amu-
CBIBAIOTCS] B MAaTPHILy OIIHOOK, KOTOpAst CITy>KHT OCHO-
BOM TS TaTbHEHIIIETO TepeoOyIeHUs] MOJIEIICH.

JIKCIePUMEHTAJIbHAsI YCTAHOBKA
OKcnepuMeHThI TpoBovIHeh Ha 11 kitaccax Java
nu3 mpumepoB koxa Ha BeO-caiite OpenJML [14].

Cpennuii pasmep kimacca coctasisain 50—100 ctpok
Kofla, @ (PyHKIIMOHAJIBHOCTh BKJIIOYAJia METO/bI C LU~
KJIaMH, YCJIIOBUSIMU M 00paboTkoi uckiatoueHuit. Ilo-
TEHIMAJIbHBIM OTPaHUYEHUEM HCCIIEOBAaHUS SIBIISET-
Csl OTHOCHUTENIbHO HEOOJBIION pa3Mep BBIOOPKH, UTO
UCKJIIOYAeT BO3MOXKHOCTBH 3KCTPANOJSILMKU Pe3yibTa-
TOB Ha Ooyiee KpyNHble MPOEKThI. JJi MOBBILLIEHUS
HAJIe)KHOCTH PE3yNbTaTOB IpPEUIaraeTcsl paciiupyuTh
Ha0Op TECTOBBIX CIIyYaeB B MOCIEAYIOMUX padoTax.

HccnenoBarensckass MH(pacTpykTypa BKIIOYAIa
MacBook Pro M1 ¢ 16 I'b yHudumupoBanHoi ma-
MSTH, KOTOPBI HCIOJB30BAJICS A Pa3BEPTHIBAHUS
LLM wu BeimosHeHUS (POPMATBLHBIX MPOIEAYP BEpH-
bukarum.

g OLleHKM NPOU3BOAMTEIBHOCTH HCIONb30Ba-
JUCh CIEMYIONINE METPHUKH:

* TOYHOCTH T€HEpAIMH — JO0JIsl aHHOTAIIHHA, TTPO-
HISIINX CHHTAaKCUYECKYI0 Bepr(UKALINIO;

* MPaBWIBHOCTh HMCXOIHOTO KOIAa — TMPOIEHT
CKOMITMJIMPOBAHHBIX KJIACCOB, MPOUIEIAIINX BepUu-
kauuto SpotBugs;

* Bpems 00paboTKHU Kiacca.

Hcxonuslii KO OSKCHEPUMEHTAJIbHOM YCTaHOB-
KU JIOCTYNIEH B PEMO3UTOPHM TMPOEKTa MO CCHUIKE
http://github.com/Gleavero/verification_system.

3akiaroueHue

OCHOBHOH BKJIaJl MPOBEIEHHOTO UCCIIEIOBaHMSI 3a-
KJIIOYaeTCsl B pa3paboTKe COBpeMeHHOU HH(ppacTpyK-
Typbl Bepu(UKALUU, KOTOpas 0O0beAUHSAET OONbLINE
SI3BIKOBBIC MOJIENIU C YTWJIMTAMH (OpPMalbHON BepH-
¢ukanmu, Takumu kak SpotBugs m OpenJML. DOra
AKOCUCTEMA 00JIer4aeT ONTUMH3HPOBAHHOE CO3aHHe
W ToATBepkIeHue crienudukanuii JML.

[TpenBapuTenbHBIE IKCIIEPUMEHTAIBHBIE PE3YIlb-
TaThl (Ta0JM. 2) MOKA3BIBAIOT, YTO MOJIEIH YMEPEHHOTO
pa3Mepa, XapaKTepU3yIOIIUecs: KOJIMYeCTBOM Iapa-
METPOB, HE HPEBBIIIAIONIUM 7 MIPJ, JEMOHCTPHUPY-
IOT CIIOCOOHOCTH T€HEPUPOBATh CUHTAKCHYECKH Ipa-
BUWJIbHBIE aHHOTAIINH.

OnHako ApQPEKTUBHOCTh ATHX MOJCTEH CHUKACT-
Csl M3-32 CMEIIAHHBIX MEPEMEHHBIX, B YACTHOCTH KOH-
TEKCTHBIX 3aBUCHMOCTEH M HENOCTAaTOYHO OoraTroro
HaOopa JaHHBIX, MCIOIB3YEMOr0 Ha dTare OOy4YeHusl.
[To pa3nmuuHBIM TecTaM CpenHssl TOYHOCTh TEHEPAIH
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Tabnuya 1
CpaBHenue BSM, ucno/ib30BaHHbIX B padoTe
CodeLlama 7B Qwen-Coder 1.5 (7B) DeepSeek Coder 6B
HumanEval (Pass@1), % 34,8 41,3 72
Pa3mep koHTEeKCTa, TOKEHOB 16 ThIC. 8 ThIC. 16 ThIC.
Pasmep mozenu, mapameTpoB 7 Mapn 7 mMapa 6 MIpn
Hcnonp3oBanue namsatu, I'b 14 14 12
JInuenzus Ocobas (Meta) Apache 2.0 MIT
Tabnuya 2
Pe3yabTarsl Bepudukanumn
Metpuxka CodeLlama 7B Qwen-Coder 1.5 (7B) DeepSeek Coder 6B
YenemrHo CKOMITMITAPOBAHO, % 25,00 58,33 25,00
[Ipouwno uepes SpotBugs, % 8,33 8,33 8,33
[Mpouwno uepe3 OpenIML, % 8,33 8,33 8,33
Cpennee BpeMsi BepupHKAIIMU OTHOTO KJlacca, C 87,25 34,76 71,12

crierm¢ukanmiit JIML coctaBmia mpumepHo 8,33 %, Xotst
obun 1 siBHBIE Junepsl: Qwen-Coder 1.5 mponemoHn-
CTPUPOBAJ MaKCUMAJIbHYIO IPOM3BOIUTEILHOCTh HA
ypoBHe 58 %, a CodeLlama 7B noka3zan npomexyTou-
HbIE pe3yNbTarhl Ha ypoBHE 25 %. AHaIU3 NpPOTECTH-
POBaHHBIX KOH(UTYpaIfii BHISBUI HECKOJIBKO OOLIMX
HeocTaTkoB. K HUM OTHOCATCS HETOUHOCTH B OIIpesie-
JIEHUM [IPE/IBAPUTEIIbHBIX YCIIOBUH /U1l METOIOB, BbI3bI-
BaIOIIMX MOOOUHBIE APPEKThI, U CUCTEMAaTUYECKOE Hr-
HOPHPOBaHHE MHBAPUAHTOB Ha YPOBHE Ki1accos (8 %).
1o pe3ynbraraM SKCIIEpUMEHTOB IIpe/iIaraeMas Me-
TOZOJIOTHUSI OCTUTaeT TOYHOCTH Bepudukanuu 8,3 %,
YTO HUKE CTaHJApTOB, YCTAHOBIEHHBIX KOHKYpPEHTa-

CIIMCOK UCTOYHHUKOB

MU, y4dacTBOBaBIIMMHU B KOoHKypce SV-COMP [15].
Jlnst Gonee BBHICOKOW TOUHOCTH Te€Hepanuu crenudu-
Kalluil PEeKOMEHAYETCS HCIOIb30BaTh MOJIEIH, OC-
HalEHHBIE PACIIMPEHHBIMU KOHTEKCTHBIMU OKHAMU
(MuHEManbHAsA eMKocTh — 16 000 TokeHOB) Hapsay
C apXUTEKTYPHBIMU MacluTadamu, MPEBBIMIAIOIIIMH
10 mapn mapamerpoB, TunuuHbiMU Uit GPT-4 unu
ananTupoBaHHbiX Bepcuii CodelLlama. Mmeromuecs
JIAHHbIE CBUAETENbCTBYIOT O TOM, YTO UCIIOJIb30BAHHE
AJITOPUTMOB MAIIMHHOTO OOYYEHHs C CUHTETUYECKU-
MU Ha0OpaMu J1aHHBIX, aHHOTUPOBAHHBIMU Ha SI3bIKE
JML, cyiiecTBeHHO OBBIIIAET CEMaHTHUECKYHO KOre-
PEHTHOCTh MOIyYaeMbIX CrienupuKauil.
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Abstract. This study presents an exploration of the application of large language models for software
verification. Purpose: to create a system for the automatic verification of software for specified requirements.
Information technologies, formal verification, artificial intelligence, and other innovative approaches have
been used to achieve this goal. Methods: analysis of current tools and technologies for software verification,
including existing instruments. Results: the research highlights the strengths and weaknesses associated with
the use of large language models for software verification. Practical significance: enhancing the quality and
reliability of software is crucial. This research is important for advancing railway transportation technologies
and increasing the reliability of information systems. Discussion: recommendations have been formulated for
Sfurther improvement of the proposed verification system. Additionally, the issues requiring further research and
development have been highlighted.
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