
Введение

Формальные языки спецификации, такие как
Java Modeling Language (JML) [1], стали незамени-
мыми для спецификации и верификации поведе-
ния Java-программ. Эти инструменты позволяют
разработчикам модульно определять предвари-
тельные условия, последующие условия, инвари-
анты и условия кадра, что обычно называется про-
ектированием по контракту. В настоящее время
используются дедуктивная верификация (с ис-

пользованием доказательства теорем и символьно-
го выполнения), ограниченная проверка моделей
(на основе теорий выполнимости формул) и новые
гибридные методы, включающие машинное обуче-
ние для автоматизации генерации спецификаций.

Однако ручное создание аннотаций JML яв-
ляется сложным, трудоемким и подверженным
ошибкам процессом. Появление мощных LLM
(англ. Large Language Model — большая языко-

УДК 004.052.42

Формальная верификация программного обеспечения
с помощью больших языковых моделей
Мельников
Павел
Андреевич

— �магистр, аспирант кафедры «Информатика и вычислительная техника». Научные
интересы: надежность программного обеспечения, искусственный интеллект,
верификация программного обеспечения. E-mail: gleavero@gmail.com

Тюгашев
Андрей
Александрович

— �д-р техн. наук, доцент, профессор кафедры «Информатика и вычислительная
техника». Научные интересы: искусственный интеллект, разработка программного
обеспечения, надежность программного обеспечения. E-mail: tau797@mail.ru

Институт автоматики и информационных технологий, Самарский государственный технический уни-
верситет, Россия, 443100, Самарская обл., г. Самара, ул. Молодогвардейская, д. 244

Для цитирования: Мельников П. А., Тюгашев А. А. Формальная верификация программного обеспече-
ния с помощью больших языковых моделей // Интеллектуальные технологии на транспорте. 2025. № 4 (44).
С. 47–53. DOI: 10.20295/2413-2527-2025-444-47-53

Аннотация. Представлено исследование о варианте применения больших языковых моделей для вери-
фикации программного обеспечения. Цель: создание системы для автоматической верификации про-
граммного обеспечения заданным требованиям. Для достижения цели использованы информационные
технологии, формальная верификация, искусственный интеллект и другие инновационные подходы.
Методы: анализ современных инструментов и технологий для верификации ПО, включая существу-
ющие инструменты. Результаты: показывают сильные и слабые стороны применения больших язы-
ковых моделей для верификации ПО. Практическая значимость: заключается в повышении качества
и надежности ПО. Исследование имеет важное значение для развития технологий железнодорожного
транспорта и повышения надежности работы информационных систем. Обсуждение: высказывают-
ся рекомендации по дальнейшему совершенствованию предложенной системы верификации, освеща-
ются вопросы, требующие дальнейших исследований и разработок.

Ключевые слова: большие языковые модели, формальная верификация, автоматизация спецификаций,
Java Modeling Language, искусственный интеллект

1.2.1 — искусственный интеллект и машинное обучение (технические науки); 2.3.1 — системный ана-
лиз, управление и обработка информации (технические науки)

47Intellectual Technologies on Transport. 2025. No. 4

Artificial Intelligence and Transport Systems

вая модель, БЯМ) открыло новые возможности
для автоматизации генерации спецификаций JML.
Интеграция БЯМ с формальными методами может
снизить трудоемкость ручной работы и повысить
надежность программного обеспечения. Тем не
менее остаются следующие проблемы:

•	 зависимость от контекста — БЯМ могут упу-
скать из виду семантику кода, например побочные
эффекты методов;

•	 синтаксические ошибки — БЯМ могут гене-
рировать код, несовместимый с JML. Модели ге-
нерации кода требуют дополнительной настройки,
поскольку для точной генерации аннотаций необхо-
димы более объемные обучающие наборы данных;

•	 семантическая несогласованность — автома-
тически сгенерированные контракты могут проти-
воречить предполагаемой логике приложения.

Эти проблемы подрывают доверие к автомати-
зированным решениям и ограничивают их при-
менимость на практике. В результате изучение
возможностей интеграции БЯМ с символьной ве-
рификацией будет иметь большое значение для
снижения рабочей нагрузки при верификации про-
граммного обеспечения и повышения качества по-
лучаемого программного обеспечения.

Соответственно, цель исследования заключает-
ся в изучении точности генерации аннотаций JML
с использованием «небольших» языковых моделей
(до 10 млрд параметров) и оценке возможности
их использования без дополнительной тонкой на-
стройки на примерах кода с существующими анно-
тациями JML.

Для достижения цели были сформулированы
следующие задачи:

•	 подготовить тестовые примеры для генера-
ции аннотаций JML;

•	 сгенерировать аннотации и проверить их;
•	 собрать статистику выполнения и проанали-

зировать качество аннотаций.

Существующие подходы к генерации
JML-спецификаций

Традиционно использовались шаблонные ме-
тоды (например, Houdini) и инструменты вывода
инвариантов на основе тестов (например, Daikon).

Они эффективно работают для простых специфи-
каций, но плохо описывают сложную семантику
крупных Java-программ.

Новейшие LLM-методики, например SpecGen,
используют большие модели для понимания кон-
текста кода и генерации JML-спецификаций.
Обычно применяется небольшое количество при-
меров, и затем спецификации уточняются по ре-
зультатам проверки; используются мутации и эв-
ристики отбора [2, 3].

Гибридные подходы интегрируют статический
анализ и NLP-методы для автоматического извле-
чения предикатов и обогащения спецификаций
(например, проект DECODER): статический ана-
лиз дает надежные предикаты, NLP — предикаты
из документации [4].

Дедуктивная верификация переводит анноти-
рованные Java-программы в логические формулы;
доказательство корректности формул доказывает
корректность кода. Инструмент KeY — пример
среды для интерактивного доказательства с ис-
пользованием Java Dynamic Logic [5, 6].

Метод BMC (Bounded Model Checking) исследу-
ет пространство состояний до заданного предела,
разворачивая циклы и рекурсию фиксированное
число раз и проверяя свойства SMT-решателями.
Плюс — высокая автоматизация и быстрые контр-
примеры, минус — неполнота за пределами грани-
цы проверки [7, 8].

LLM применяются для автоматизации создания
формальных спецификаций. Мутирование и эври-
стики отбора в сочетании с верификацией дают
улучшенные результаты [9].

Совмещение выводов статического анализа
и результатов NLP позволяет получать обогащен-
ные JML-спецификации, итеративная доработка
с участием человека повышает качество [4].

Один из новейших подходов улучшает гене-
рацию спецификаций за счет использования опе-
раторов мутации для создания разнообразных
вариантов — кандидатов. Каждый вариант про-
веряется, и эвристическая система выбирает тот,
который с наибольшей вероятностью является
правильным. Такое взаимодействие между БЯМ
и формальной верификацией значительно превос-

48 Интеллектуальные технологии на транспорте. 2025. № 4

	 Искусственный интеллект и транспортные системы

ходит традиционные статические и основанные на
тестах методы, обеспечивая более высокие показа-
тели успешности при валидации [9].

Предлагаемый метод
Предлагаемый метод автоматизации генерации

и верификации спецификаций JML состоит из че-
тырех последовательных этапов.

На первом этапе генерируются аннотации.
Входным материалом является исходный код клас-
сов Java с комментариями на естественном языке.
На этом этапе используются локально разверну-
тые модели с открытыми весами: Qwen2.5-coder,
CodeLlama и Deepseek-coder-v2 [10, 11].

Сравнение основных параметров моделей при-
ведено в табл. 1. Особое внимание уделяется пара-
метрам (температура 0,7, длина контекста — 4096
токенов), которые позволяют достичь баланса
между креативностью и точностью.

На втором этапе проводится синтаксическая
проверка. Сгенерированные аннотации проверя-
ются на наличие синтаксических ошибок, типо-
графских несоответствий и конфликтов контрак-
тов с помощью инструмента SpotBugs (версия
4.8.3) [12]. Журналы ошибок записываются для
последующего исправления.

На третьем этапе — формальной верифика-
ции — спецификации должны быть формально
проверены в среде OpenJML [13] (версия 21-0.8)
с использованием символьного выполнения и SMT
(Satisfiability Modulo Theories)-решателей (логиче-
ских решателей с поддержкой теорий) (Z3). Не-
удачные верификации анализируются на предмет
таких причин, как недостаточная детализация кон-
тракта или семантические несоответствия.

Четвертый этап — классификация и исправление
ошибок. Синтаксические ошибки будут автомати-
чески удалены скриптами, а семантические ошибки
требуют ручного вмешательства. Результаты запи-
сываются в матрицу ошибок, которая служит осно-
вой для дальнейшего переобучения моделей.

Экспериментальная установка
Эксперименты проводились на 11 классах Java

из примеров кода на веб-сайте OpenJML [14].

Средний размер класса составлял 50–100 строк
кода, а функциональность включала методы с ци-
клами, условиями и обработкой исключений. По-
тенциальным ограничением исследования являет-
ся относительно небольшой размер выборки, что
исключает возможность экстраполяции результа-
тов на более крупные проекты. Для повышения
надежности результатов предлагается расширить
набор тестовых случаев в последующих работах.

Исследовательская инфраструктура включала
MacBook Pro M1 с 16 ГБ унифицированной па-
мяти, который использовался для развертывания
LLM и выполнения формальных процедур вери-
фикации.

Для оценки производительности использова-
лись следующие метрики:

•	 точность генерации — доля аннотаций, про-
шедших синтаксическую верификацию;

•	 правильность исходного кода — процент
скомпилированных классов, прошедших верифи-
кацию SpotBugs;

•	 время обработки класса.
Исходный код экспериментальной установ-

ки доступен в репозитории проекта по ссылке
http://github.com/Gleavero/verification_system.

Заключение
Основной вклад проведенного исследования за-

ключается в разработке современной инфраструк-
туры верификации, которая объединяет большие
языковые модели с утилитами формальной вери-
фикации, такими как SpotBugs и OpenJML. Эта
экосистема облегчает оптимизированное создание
и подтверждение спецификаций JML.

Предварительные экспериментальные резуль-
таты (табл. 2) показывают, что модели умеренного
размера, характеризующиеся количеством пара-
метров, не превышающим 7 млрд, демонстриру-
ют способность генерировать синтаксически пра-
вильные аннотации.

Однако эффективность этих моделей снижает-
ся из-за смешанных переменных, в частности кон-
текстных зависимостей и недостаточно богатого
набора данных, используемого на этапе обучения.
По различным тестам средняя точность генерации

49Intellectual Technologies on Transport. 2025. No. 4

Artificial Intelligence and Transport Systems

спецификаций JML составила примерно 8,33 %, хотя
были и явные лидеры: Qwen-Сoder 1.5 продемон-
стрировал максимальную производительность на
уровне 58 %, а CodeLlama 7B показал промежуточ-
ные результаты на уровне 25 %. Анализ протести-
рованных конфигураций выявил несколько общих
недостатков. К ним относятся неточности в опреде-
лении предварительных условий для методов, вызы-
вающих побочные эффекты, и систематическое иг-
норирование инвариантов на уровне классов (8 %).

По результатам экспериментов предлагаемая ме-
тодология достигает точности верификации 8,3 %,
что ниже стандартов, установленных конкурента-

ми, участвовавшими в конкурсе SV-COMP [15].
Для более высокой точности генерации специфи-
каций рекомендуется использовать модели, ос-
нащенные расширенными контекстными окнами
(минимальная емкость — 16 000 токенов) наряду
с архитектурными масштабами, превышающими
10 млрд параметров, типичными для GPT-4 или
адаптированных версий CodeLlama. Имеющиеся
данные свидетельствуют о том, что использование
алгоритмов машинного обучения с синтетически-
ми наборами данных, аннотированными на языке
JML, существенно повышает семантическую коге-
рентность получаемых спецификаций.

СПИСОК ИСТОЧНИКОВ
1.	 Leavens G. T., Cheon Y. Design by Contract with JML. 2006. 13 p. URL: http://www.academia.edu/26405390/

Design_by_Contract_with_JML (дата обращения: 07.11.2025).
2.	 SpecGen: Automated Generation of Formal Program Specifications via Large Language Models / L. Ma, S. Liu,

Y. Li // Proceedings of the 47th International Conference on Software Engineering (ICSE 2025) (Ottawa, Canada, 26 April —
06 May 2025). Institute of Electrical and Electronics Engineers, 2025. Pp. 16–28. DOI: 10.1109/ICSE55347.2025.00129.

3.	 Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions? / M. Endres,
S. Fakhoury, S. Chakraborty, S. K. Lahiri // Proceedings of the ACM on Software Engineering. 2024. Vol. 1, Iss. FSE. Art.
No. 84. Pp. 1889–1912. DOI: 10.1145/366079.

4.	 Puccetti A., de Chalendar G., Gibello P.-Y. Combining Formal and Machine Learning Techniques for the Genera-
tion of JML Specifications // Proceedings of the 23rd ACM International Workshop on Formal Techniques for Java-like
Programs (FTfJP ‘21) (online, 13 July 2021). New York: Association for Computing Machinery. 2021. Pp. 59–64. DOI:
10.1145/3464971.3468425.

5.	 The Java Verification Tool KeY: A Tutorial / B. Beckert, R. Bubel, D. Drodt [et al.] // Formal Methods (FM 2024):
Proceedings of the 26th International Symposium (Milan, Italy, 09–13 September 2024). Part 2. Lecture Notes in Computer
Science. Vol. 14934 / A. Platzer [et al.] (eds). Cham: Springer, 2025. Pp. 597–623. DOI: 10.1007/978-3-031-71177-0_32.

Таблица 1
Сравнение БЯМ, использованных в работе

CodeLlama 7B Qwen-Coder 1.5 (7B) DeepSeek Coder 6B
HumanEval (Pass@1), % 34,8 41,3 72
Размер контекста, токенов 16 тыс. 8 тыс. 16 тыс.
Размер модели, параметров 7 млрд 7 млрд 6 млрд
Использование памяти, ГБ 14 14 12
Лицензия Особая (Meta) Apache 2.0 MIT

Таблица 2
Результаты верификации

Метрика CodeLlama 7B Qwen-Coder 1.5 (7B) DeepSeek Coder 6B
Успешно скомпилировано, % 25,00 58,33 25,00
Прошло через SpotBugs, % 8,33 8,33 8,33
Прошло через OpenJML, % 8,33 8,33 8,33
Среднее время верификации одного класса, с 87,25 34,76 71,12

50 Интеллектуальные технологии на транспорте. 2025. № 4

	 Искусственный интеллект и транспортные системы

6.	 Hähnle R., Huisman M. Deductive Software Verification: From Pen-and-Paper Proofs to Industrial Tools // Comput-
ing and Software Science: State of the Art and Perspectives. Lecture Notes in Computer Science. Vol. 10000 / B. Steffen,
G. Woeginger (eds). Cham: Springer, 2019. Pp. 345–373. DOI: 10.1007/978-3-319-91908-9_18.

7.	 Modular Verification of JML Contracts Using Bounded Model Checking / B. Beckert, M. Kirsten, J. Klamroth,
M. Ulbrich // Leveraging Applications of Formal Methods, Verification and Validation: Verification Principles (ISoLA
2020): Proceedings of the 9th International Symposium on Leveraging Applications of Formal Methods (Rhodes, Greece,
20–30 October 2020). Part 1. Lecture Notes in Computer Science. Vol. 12476 / T. Margaria, B. Steffen (eds). Cham:
Springer, 2020. Pp. 60–80. DOI: 10.1007/978-3-030-61362-4_4.

8.	 Liu T. Efficient Verification of Programs with Complex Data Structures Using SMT Solvers: A Thesis for the Degree
of Doctor of Natural Science. Karlsruhe Institute of Technology, 2018. 173 p. DOI: 10.5445/IR/1000084545.

9.	 SpecEval: Evaluating Code Comprehension in Large Language Models via Program Specifications / L. Ma, S. Liu,
L. Bu [et al.] // ArXiv. 2025. Vol. 2409.12866. 12 p. DOI: 10.48550/arXiv.2409.12866.

10.	Code Llama: Open Foundation Models for Code / B. Rozière, J. Gehring, F. Gloeckle [et al.] // ArXiv. 2024.
Vol. 2308.12950. 48 p. DOI: 10.48550/arXiv.2308.12950.

11.	Qwen Technical Report / J. Bai, S. Bai, Y. Chu [et al.] // ArXiv. 2023. Vol. 2309.16609. 59 p. DOI: 10.48550/arX-
iv.2309.16609.

12.	SpotBugs Manual — SpotBugs 4.9.8 Documentation. URL: http://spotbugs.readthedocs.io/en/latest/index.html
(дата обращения: 07.11.2025).

13.	About OpenJML. URL: http://www.openjml.org/about (дата обращения: 07.11.2025).
14.	OpenJML Examples. URL: http://www.openjml.org/examples (дата обращения: 07.11.2025).
15.	Beyer D., Strejček J. Improvements in Software Verification and Witness Validation: SV-COMP // Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS 2025): Proceedings of the 31st International Conference
(Hamilton, Canada, 03–08 May 2025). Part 3. Lecture Notes in Computer Science. Vol. 15698 / A. Gurfinkel, M. Heule
(eds). Cham: Springer, 2025. Pp. 151–186. DOI: 10.1007/978-3-031-90660-2_9.

Дата поступления: 15.11.2025
Решение о публикации: 18.11.2025

51Intellectual Technologies on Transport. 2025. No. 4

Artificial Intelligence and Transport Systems

Formal Verification of Software Using Large Language Models
Pavel A.
Melnikov

— �Master of Engineering, Postgraduate Student of the “Computer Science and Computer
Engineering” Department. Research interests: software reliability, artificial intelligence,
software verification. E-mail: gleavero@gmail.com

Andrey A.
Tyugashev

— �Dr. Sci. in Engineering, Assistant Professor, Professor of the “Computer Science and Computer
Engineering” Department. Research interests: artificial intelligence, software development,
software reliability. E-mail: tau797@mail.ru

Automation and Information Technology Institute, Samara State Technical University, 244, Molodogvardeyskaya
str., Samara, 443100, Russia

For citation: Melnikov P. A., Tyugashev A. A. Formal Verification of Software Using Large Language Models.
Intellectual Technologies on Transport, 2025, No. 4 (44), Pp. 47–53. DOI: 10.20295/2413-2527-2025-444-47-53.
(In Russian)

Abstract. This study presents an exploration of the application of large language models for software
verification. Purpose: to create a system for the automatic verification of software for specified requirements.
Information technologies, formal verification, artificial intelligence, and other innovative approaches have
been used to achieve this goal. Methods: analysis of current tools and technologies for software verification,
including existing instruments. Results: the research highlights the strengths and weaknesses associated with
the use of large language models for software verification. Practical significance: enhancing the quality and
reliability of software is crucial. This research is important for advancing railway transportation technologies
and increasing the reliability of information systems. Discussion: recommendations have been formulated for
further improvement of the proposed verification system. Additionally, the issues requiring further research and
development have been highlighted.

Keywords: large language models, formal verification, specification automation, Java Modeling Language,
artificial intelligence

REFERENCES
1.	 Leavens G. T., Cheon Y. Design by Contract with JML. 2006. 13 p. Available at: http://www.academia.edu/26405390/

Design_by_Contract_with_JML (accessed: November 07, 2025).
2.	 Ma L., Liu S., Li Y. SpecGen: Automated Generation of Formal Program Specifications via Large Language Models,

Proceedings of the 47th International Conference on Software Engineering (ICSE 2025), Ottawa, Canada, April 26 —
May 06, 2025. Institute of Electrical and Electronics Engineers, 2025, Pp. 16–28. DOI: 10.1109/ICSE55347.2025.00129.

3.	 Endres M., Fakhoury S., Chakraborty S., Lahiri S. K. Can Large Language Models Transform Natural Language
Intent into Formal Method Postconditions? Proceedings of the ACM on Software Engineering, 2024, Vol. 1, Iss. FSE, Art.
No. 84, Pp. 1889–1912. DOI: 10.1145/366079.

4.	 Puccetti A., de Chalendar G., Gibello P.-Y. Combining Formal and Machine Learning Techniques for the Genera-
tion of JML Specifications, Proceedings of the 23rd ACM International Workshop on Formal Techniques for Java-like
Programs (FTfJP ‘21), Online, July 13, 2021. New York, Asso7нн	 1ё7ciation for Computing Machinery, 2021, Pp. 59–
64. DOI: 10.1145/3464971.3468425.

5.	 Beckert B., Bubel R., Drodt D., et al. The Java Verification Tool KeY: A Tutorial. In: Platzer A., et al. (eds) Formal
Methods (FM 2024): Proceedings of the 26th International Symposium, Milan, Italy, September 09–13, 2024. Part 2. Lec-
ture Notes in Computer Science. Vol. 14934. Cham, Springer, 2025, Pp. 597–623. DOI: 10.1007/978-3-031-71177-0_32.

52 Интеллектуальные технологии на транспорте. 2025. № 4

	 Искусственный интеллект и транспортные системы

6.	 Hähnle R., Huisman M. Deductive Software Verification: From Pen-and-Paper Proofs to Industrial Tools. In: Steffen B.,
Woeginger G. (eds) Computing and Software Science: State of the Art and Perspectives. Lecture Notes in Computer Sci-
ence. Vol. 10000. Cham, Springer, 2019, Pp. 345–373. DOI: 10.1007/978-3-319-91908-9_18.

7.	 Beckert B., Kirsten M., Klamroth J., Ulbrich M. Modular Verification of JML Contracts Using Bounded Model
Checking, In: Margaria T., Steffen B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Veri-
fication Principles (ISoLA 2020): Proceedings of the 9th International Symposium on Leveraging Applications of Formal
Methods, Rhodes, Greece, October 20–30, 2020. Part 1. Lecture Notes in Computer Science. Vol. 12476. Cham, Springer,
2020, Pp. 60–80. DOI: 10.1007/978-3-030-61362-4_4.

8.	 Liu T. Efficient Verification of Programs with Complex Data Structures Using SMT Solvers: A Thesis for the Degree
of Doctor of Natural Science. Karlsruhe Institute of Technology, 2018, 173 p. DOI: 10.5445/IR/1000084545.

9.	 Ma L., Liu S., Bu L., et al. SpecEval: Evaluating Code Comprehension in Large Language Models via Program
Specifications, ArXiv, 2025, Vol. 2409.12866, 12 p. DOI: 10.48550/arXiv.2409.12866.

10.	Rozière B., Gehring J., Gloeckle F., et al. Code Llama: Open Foundation Models for Code, ArXiv, 2024,
Vol. 2308.12950, 48 p. DOI: 10.48550/arXiv.2308.12950.

11.	Bai J., Bai S., Chu Y., et al. Qwen Technical Report, ArXiv, 2023, Vol. 2309.16609, 59 p. DOI: 10.48550/arX-
iv.2309.16609.

12.	SpotBugs Manual — SpotBugs 4.9.8 Documentation. Available at: http://spotbugs.readthedocs.io/
en/latest/index.html (accessed: November 07, 2025).

13.	About OpenJML. Available at: http://www.openjml.org/about (accessed: November 07, 2025).
14.	OpenJML Examples. Available at: http://www.openjml.org/examples (accessed: November 07, 2025).
15.	Beyer D., Strejček J. Improvements in Software Verification and Witness Validation: SV-COMP. In: Gurfinkel A.,

Heule M. (eds) Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2025): Proceedings of the 31st
International Conference, Hamilton, Canada, May 03–08, 2025. Part 3. Lecture Notes in Computer Science. Vol. 15698.
Cham, Springer, 2025, Pp. 151–186. DOI: 10.1007/978-3-031-90660-2_9.

Received: 15.11.2025
Accepted: 18.11.2025

53Intellectual Technologies on Transport. 2025. No. 4

Artificial Intelligence and Transport Systems

