
Введение

Формальные языки спецификации, такие как 
Java Modeling Language (JML) [1], стали незамени-
мыми для спецификации и  верификации поведе-
ния Java-программ. Эти инструменты позволяют 
разработчикам модульно определять предвари-
тельные условия, последующие условия, инвари-
анты и условия кадра, что обычно называется про-
ектированием по контракту. В  настоящее время 
используются дедуктивная верификация (с ис-

пользованием доказательства теорем и символьно-
го выполнения), ограниченная проверка моделей 
(на основе теорий выполнимости формул) и новые 
гибридные методы, включающие машинное обуче-
ние для автоматизации генерации спецификаций.

Однако ручное создание аннотаций JML яв-
ляется сложным, трудоемким и  подверженным 
ошибкам процессом. Появление мощных LLM 
(англ. Large Language Model  — большая языко-
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ются вопросы, требующие дальнейших исследований и разработок.
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1.2.1 — искусственный интеллект и машинное обучение (технические науки); 2.3.1 — системный ана-
лиз, управление и обработка информации (технические науки)
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вая модель, БЯМ) открыло новые возможности 
для автоматизации генерации спецификаций JML. 
Интеграция БЯМ с формальными методами может 
снизить трудоемкость ручной работы и повысить 
надежность программного обеспечения. Тем не 
менее остаются следующие проблемы:

•	 зависимость от контекста — БЯМ могут упу-
скать из виду семантику кода, например побочные 
эффекты методов;

•	 синтаксические ошибки  — БЯМ могут гене-
рировать код, несовместимый с  JML. Модели ге-
нерации кода требуют дополнительной настройки, 
поскольку для точной генерации аннотаций необхо-
димы более объемные обучающие наборы данных;

•	 семантическая несогласованность — автома-
тически сгенерированные контракты могут проти-
воречить предполагаемой логике приложения.

Эти проблемы подрывают доверие к автомати-
зированным решениям и  ограничивают их при-
менимость на практике. В  результате изучение 
возможностей интеграции БЯМ с символьной ве-
рификацией будет иметь большое значение для 
снижения рабочей нагрузки при верификации про-
граммного обеспечения и повышения качества по-
лучаемого программного обеспечения.

Соответственно, цель исследования заключает-
ся в изучении точности генерации аннотаций JML 
с использованием «небольших» языковых моделей 
(до 10 млрд параметров) и  оценке возможности 
их использования без дополнительной тонкой на-
стройки на примерах кода с существующими анно-
тациями JML.

Для достижения цели были сформулированы 
следующие задачи:

•	 подготовить тестовые примеры для генера-
ции аннотаций JML;

•	 сгенерировать аннотации и проверить их;
•	 собрать статистику выполнения и проанали-

зировать качество аннотаций.

Существующие подходы к генерации  
JML-спецификаций

Традиционно использовались шаблонные ме-
тоды (например, Houdini) и  инструменты вывода 
инвариантов на основе тестов (например, Daikon). 

Они эффективно работают для простых специфи-
каций, но плохо описывают сложную семантику 
крупных Java-программ.

Новейшие LLM-методики, например SpecGen, 
используют большие модели для понимания кон-
текста кода и  генерации JML-спецификаций. 
Обычно применяется небольшое количество при-
меров, и  затем спецификации уточняются по ре-
зультатам проверки; используются мутации и  эв-
ристики отбора [2, 3].

Гибридные подходы интегрируют статический 
анализ и NLP-методы для автоматического извле-
чения предикатов и  обогащения спецификаций 
(например, проект DECODER): статический ана-
лиз дает надежные предикаты, NLP — предикаты 
из документации [4].

Дедуктивная верификация переводит анноти-
рованные Java-программы в логические формулы; 
доказательство корректности формул доказывает 
корректность кода. Инструмент KeY  — пример 
среды для интерактивного доказательства с  ис-
пользованием Java Dynamic Logic [5, 6].

Метод BMC (Bounded Model Checking) исследу-
ет пространство состояний до заданного предела, 
разворачивая циклы и  рекурсию фиксированное 
число раз и  проверяя свойства SMT-решателями. 
Плюс — высокая автоматизация и быстрые контр-
примеры, минус — неполнота за пределами грани-
цы проверки [7, 8].

LLM применяются для автоматизации создания 
формальных спецификаций. Мутирование и эври-
стики отбора в  сочетании с  верификацией дают 
улучшенные результаты [9].

Совмещение выводов статического анализа 
и результатов NLP позволяет получать обогащен-
ные JML-спецификации, итеративная доработка 
с участием человека повышает качество [4].

Один из новейших подходов улучшает гене-
рацию спецификаций за счет использования опе-
раторов мутации для создания разнообразных 
вариантов  — кандидатов. Каждый вариант про-
веряется, и  эвристическая система выбирает тот, 
который с  наибольшей вероятностью является 
правильным. Такое взаимодействие между БЯМ 
и формальной верификацией значительно превос-
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ходит традиционные статические и основанные на 
тестах методы, обеспечивая более высокие показа-
тели успешности при валидации [9].

Предлагаемый метод
Предлагаемый метод автоматизации генерации 

и верификации спецификаций JML состоит из че-
тырех последовательных этапов.

На первом этапе генерируются аннотации. 
Входным материалом является исходный код клас-
сов Java с комментариями на естественном языке. 
На этом этапе используются локально разверну-
тые модели с  открытыми весами: Qwen2.5-coder, 
CodeLlama и Deepseek-coder-v2 [10, 11].

Сравнение основных параметров моделей при-
ведено в табл. 1. Особое внимание уделяется пара-
метрам (температура 0,7, длина контекста — 4096 
токенов), которые позволяют достичь баланса 
между креативностью и точностью.

На втором этапе проводится синтаксическая 
проверка. Сгенерированные аннотации проверя-
ются на наличие синтаксических ошибок, типо-
графских несоответствий и  конфликтов контрак-
тов с  помощью инструмента SpotBugs (версия 
4.8.3) [12]. Журналы ошибок записываются для 
последующего исправления.

На третьем этапе — формальной верифика-
ции  — спецификации должны быть формально 
проверены в среде OpenJML [13] (версия 21-0.8) 
с использованием символьного выполнения и SMT 
(Satisfiability Modulo Theories)-решателей (логиче-
ских решателей с поддержкой теорий) (Z3). Не-
удачные верификации анализируются на предмет 
таких причин, как недостаточная детализация кон-
тракта или семантические несоответствия.

Четвертый этап — классификация и исправление 
ошибок. Синтаксические ошибки будут автомати-
чески удалены скриптами, а семантические ошибки 
требуют ручного вмешательства. Результаты запи-
сываются в матрицу ошибок, которая служит осно-
вой для дальнейшего переобучения моделей.

Экспериментальная установка
Эксперименты проводились на 11 классах Java 

из примеров кода на веб-сайте OpenJML [14]. 

Средний размер класса составлял 50–100 строк 
кода, а функциональность включала методы с ци-
клами, условиями и обработкой исключений. По-
тенциальным ограничением исследования являет-
ся относительно небольшой размер выборки, что 
исключает возможность экстраполяции результа-
тов на более крупные проекты. Для повышения 
надежности результатов предлагается расширить 
набор тестовых случаев в последующих работах.

Исследовательская инфраструктура включала 
MacBook Pro M1 с  16 ГБ унифицированной па-
мяти, который использовался для развертывания 
LLM и  выполнения формальных процедур вери-
фикации.

Для оценки производительности использова-
лись следующие метрики:

•	 точность генерации — доля аннотаций, про-
шедших синтаксическую верификацию;

•	 правильность исходного кода  — процент 
скомпилированных классов, прошедших верифи-
кацию SpotBugs;

•	 время обработки класса.
Исходный код экспериментальной установ-

ки доступен в  репозитории проекта по ссылке  
http://github.com/Gleavero/verification_system.

Заключение
Основной вклад проведенного исследования за-

ключается в разработке современной инфраструк-
туры верификации, которая объединяет большие 
языковые модели с  утилитами формальной вери-
фикации, такими как SpotBugs и  OpenJML. Эта 
экосистема облегчает оптимизированное создание 
и подтверждение спецификаций JML.

Предварительные экспериментальные резуль-
таты (табл. 2) показывают, что модели умеренного 
размера, характеризующиеся количеством пара-
метров, не превышающим 7 млрд, демонстриру-
ют способность генерировать синтаксически пра-
вильные аннотации.

Однако эффективность этих моделей снижает-
ся из-за смешанных переменных, в частности кон-
текстных зависимостей и  недостаточно богатого 
набора данных, используемого на этапе обучения. 
По различным тестам средняя точность генерации 
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спецификаций JML составила примерно 8,33 %, хотя 
были и  явные лидеры: Qwen-Сoder 1.5 продемон-
стрировал максимальную производительность на 
уровне 58 %, а CodeLlama 7B показал промежуточ-
ные результаты на уровне 25 %. Анализ протести-
рованных конфигураций выявил несколько общих 
недостатков. К ним относятся неточности в опреде-
лении предварительных условий для методов, вызы-
вающих побочные эффекты, и систематическое иг-
норирование инвариантов на уровне классов (8 %).

По результатам экспериментов предлагаемая ме-
тодология достигает точности верификации 8,3 %, 
что ниже стандартов, установленных конкурента-

ми, участвовавшими в  конкурсе SV-COMP  [15]. 
Для более высокой точности генерации специфи-
каций рекомендуется использовать модели, ос-
нащенные расширенными контекстными окнами 
(минимальная емкость — 16 000 токенов) наряду 
с  архитектурными масштабами, превышающими 
10 млрд параметров, типичными для GPT-4 или 
адаптированных версий CodeLlama. Имеющиеся 
данные свидетельствуют о том, что использование 
алгоритмов машинного обучения с синтетически-
ми наборами данных, аннотированными на языке 
JML, существенно повышает семантическую коге-
рентность получаемых спецификаций.

СПИСОК ИСТОЧНИКОВ
1.	 Leavens G. T., Cheon Y. Design by Contract with JML. 2006. 13 p. URL: http://www.academia.edu/26405390/

Design_by_Contract_with_JML (дата обращения: 07.11.2025).
2.	 SpecGen: Automated Generation of Formal Program Specifications via Large Language Models / L. Ma, S. Liu,  

Y. Li // Proceedings of the 47th International Conference on Software Engineering (ICSE 2025) (Ottawa, Canada, 26 April — 
06 May 2025). Institute of Electrical and Electronics Engineers, 2025. Pp. 16–28. DOI: 10.1109/ICSE55347.2025.00129.

3.	 Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions? / M. Endres, 
S. Fakhoury, S. Chakraborty, S. K. Lahiri // Proceedings of the ACM on Software Engineering. 2024. Vol. 1, Iss. FSE. Art. 
No. 84. Pp. 1889–1912. DOI: 10.1145/366079.

4.	 Puccetti A., de Chalendar G., Gibello P.-Y. Combining Formal and Machine Learning Techniques for the Genera-
tion of JML Specifications // Proceedings of the 23rd ACM International Workshop on Formal Techniques for Java-like 
Programs (FTfJP ‘21) (online, 13 July 2021). New York: Association for Computing Machinery. 2021. Pp. 59–64. DOI: 
10.1145/3464971.3468425.

5.	 The Java Verification Tool KeY: A Tutorial / B. Beckert, R. Bubel, D. Drodt [et al.] // Formal Methods (FM 2024): 
Proceedings of the 26th International Symposium (Milan, Italy, 09–13 September 2024). Part 2. Lecture Notes in Computer 
Science. Vol. 14934 / A. Platzer [et al.] (eds). Cham: Springer, 2025. Pp. 597–623. DOI: 10.1007/978-3-031-71177-0_32.

Таблица 1
Сравнение БЯМ, использованных в работе

CodeLlama 7B Qwen-Coder 1.5 (7B) DeepSeek Coder 6B
HumanEval (Pass@1), % 34,8 41,3 72
Размер контекста, токенов 16 тыс. 8 тыс. 16 тыс.
Размер модели, параметров 7 млрд 7 млрд 6 млрд
Использование памяти, ГБ 14 14 12
Лицензия Особая (Meta) Apache 2.0 MIT

Таблица 2
Результаты верификации

Метрика CodeLlama 7B Qwen-Coder 1.5 (7B) DeepSeek Coder 6B
Успешно скомпилировано, % 25,00 58,33 25,00
Прошло через SpotBugs, % 8,33 8,33 8,33
Прошло через OpenJML, % 8,33 8,33 8,33
Среднее время верификации одного класса, с 87,25 34,76 71,12

50 Интеллектуальные технологии на транспорте. 2025. № 4

	 Искусственный интеллект и транспортные системы



6.	 Hähnle R., Huisman M. Deductive Software Verification: From Pen-and-Paper Proofs to Industrial Tools // Comput-
ing and Software Science: State of the Art and Perspectives. Lecture Notes in Computer Science. Vol. 10000 / B. Steffen, 
G. Woeginger (eds). Cham: Springer, 2019. Pp. 345–373. DOI: 10.1007/978-3-319-91908-9_18.

7.	 Modular Verification of JML Contracts Using Bounded Model Checking  / B. Beckert, M. Kirsten, J. Klamroth, 
M. Ulbrich  // Leveraging Applications of Formal Methods, Verification and Validation: Verification Principles (ISoLA 
2020): Proceedings of the 9th International Symposium on Leveraging Applications of Formal Methods (Rhodes, Greece,  
20–30 October 2020). Part 1. Lecture Notes in Computer Science. Vol. 12476  / T. Margaria, B. Steffen (eds). Cham: 
Springer, 2020. Pp. 60–80. DOI: 10.1007/978-3-030-61362-4_4.

8.	 Liu T. Efficient Verification of Programs with Complex Data Structures Using SMT Solvers: A Thesis for the Degree 
of Doctor of Natural Science. Karlsruhe Institute of Technology, 2018. 173 p. DOI: 10.5445/IR/1000084545.

9.	 SpecEval: Evaluating Code Comprehension in Large Language Models via Program Specifications / L. Ma, S. Liu, 
L. Bu [et al.] // ArXiv. 2025. Vol. 2409.12866. 12 p. DOI: 10.48550/arXiv.2409.12866.

10.	Code Llama: Open Foundation Models for Code  / B. Rozière, J. Gehring, F. Gloeckle [et al.]  // ArXiv. 2024. 
Vol. 2308.12950. 48 p. DOI: 10.48550/arXiv.2308.12950.

11.	Qwen Technical Report / J. Bai, S. Bai, Y. Chu [et al.] // ArXiv. 2023. Vol. 2309.16609. 59 p. DOI: 10.48550/arX-
iv.2309.16609.

12.	SpotBugs Manual  — SpotBugs 4.9.8 Documentation. URL: http://spotbugs.readthedocs.io/en/latest/index.html 
(дата обращения: 07.11.2025).

13.	About OpenJML. URL: http://www.openjml.org/about (дата обращения: 07.11.2025).
14.	OpenJML Examples. URL: http://www.openjml.org/examples (дата обращения: 07.11.2025).
15.	Beyer D., Strejček J. Improvements in Software Verification and Witness Validation: SV-COMP // Tools and Al-

gorithms for the Construction and Analysis of Systems (TACAS 2025): Proceedings of the 31st International Conference 
(Hamilton, Canada, 03–08 May 2025). Part 3. Lecture Notes in Computer Science. Vol. 15698 / A. Gurfinkel, M. Heule 
(eds). Cham: Springer, 2025. Pp. 151–186. DOI: 10.1007/978-3-031-90660-2_9.

Дата поступления: 15.11.2025
Решение о публикации: 18.11.2025

51Intellectual Technologies on Transport. 2025. No. 4

Artificial Intelligence and Transport Systems



Formal Verification of Software Using Large Language Models
Pavel A. 
Melnikov

— �Master of Engineering, Postgraduate Student of the “Computer Science and Computer 
Engineering” Department. Research interests: software reliability, artificial intelligence, 
software verification. E-mail: gleavero@gmail.com

Andrey A. 
Tyugashev

— �Dr. Sci. in Engineering, Assistant Professor, Professor of the “Computer Science and Computer 
Engineering” Department. Research interests: artificial intelligence, software development, 
software reliability. E-mail: tau797@mail.ru

Automation and Information Technology Institute, Samara State Technical University, 244, Molodogvardeyskaya 
str., Samara, 443100, Russia

For citation: Melnikov P. A., Tyugashev A. A. Formal Verification of Software Using Large Language Models. 
Intellectual Technologies on Transport, 2025, No. 4 (44), Pp. 47–53. DOI: 10.20295/2413-2527-2025-444-47-53. 
(In Russian)

Abstract. This study presents an exploration of the application of large language models for software 
verification. Purpose: to create a system for the automatic verification of software for specified requirements. 
Information technologies, formal verification, artificial intelligence, and other innovative approaches have 
been used to achieve this goal. Methods: analysis of current tools and technologies for software verification, 
including existing instruments. Results: the research highlights the strengths and weaknesses associated with 
the use of large language models for software verification. Practical significance: enhancing the quality and 
reliability of software is crucial. This research is important for advancing railway transportation technologies 
and increasing the reliability of information systems. Discussion: recommendations have been formulated for 
further improvement of the proposed verification system. Additionally, the issues requiring further research and 
development have been highlighted.

Keywords: large language models, formal verification, specification automation, Java Modeling Language, 
artificial intelligence
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