Atrtificial Intelligence and Transport Systems

YAK 004.052.42

dopmanbHasg Bepudpukaums NPOrpamMmMHOro o6ecneyeHums
C NMOMOLLbIO OOABLUMX S3bIKOBbIX MOAEAEN

MeAbHMKOB — Maructp, actupant kadenpsl «MHpopMaTHKa 1 BBIYUCITUTENbHAS TEXHUKa». HayuHbie
Masen MHTEPECHl: HA/ICKHOCTh IPOrPaMMHOT0 00€CTIeYeHUSs], NUCKYCCTBEHHBINA HHTEIUICKT,
AHApeeBuy BepuduKalus mporpaMmHoro ooecrnedenus. E-mail: gleavero@gmail.com

Tiorawes — II-p TeXH. HayK, TOIEHT, mpodeccop kadeaps! «HPOpMaTHKa M BEIYUCIATETbHASL
AHApen TexHUKa». Hay4Hble HHTepeChl: HCKYCCTBEHHBIH MHTEIUICKT, pa3pabdoTKa IpOrpaMMHOTO
AAeKkCaHAPOBMY o0ecrieueHus, Hale)KHOCTh IporpaMMHoOTo obecrieueHus. E-mail: tau797@mail.ru

WNucTuTyT aBTOMAaTHKH M MH()OPMAITMOHHBIX TEXHOJIOTHH, CaMapCKuil TOCYIapCTBEHHBIN TEXHUYECKUA YHU-
Bepcuret, Poccus, 443100, Camapckas o6:1., T. Camapa, yir. MononorBapaeiickas, 1. 244

Jast uurupoBanusi: MensuukoB I1. A., Trorames A. A. ®opmanbHas BepupUKaIys nporpaMMHOTO odecriede-
HUS1 C TIOMOIIBIO OOJBIITNX SI3BIKOBBIX MOjieNieit // IHTeuIeKkTyansHbIe TEXHOJIOTHH Ha TpaHcmopte. 2025. No4 (44).
C. 47-53. DOLI: 10.20295/2413-2527-2025-444-47-53

AHHOTanus. [Ipeocmasneno uccieoosanue o eapuanme npumeHeHus OOILUUX AZbIKOGLIX MoOenell 015 6epu-
Qukayuu npocpammuoco obecneuenus. Ilenv: cozoanue cucmemsvi 0 agmomamuyeckol eepugurayu npo-
2pamMmno20 obecneuenus 3a0aHHblM mpebosanusam. [l O0CMudiCeHUs yeau UCNONb3068aHbl UHPOPMAYUOHHBLE
mexHonocuu, PopmManrbHas eepugurayus, UCKYCCMBEHHbLL UHMENLIeKm U Opyeue UHHOBAYUOHHbIE NOOXO0ObL.
Memoowi: ananuz co8pemeHHbIX UHCIMPYMEHmMOo8 1 mexnono2uti oaa eepuguxayuu 110, exkniovas cywecmey-
rowue uncmpymenmol. Pe3ynemamot: nokazvieaiom cuibHvle u ciadvlie CmopoHvl NpUMeHeHus. OONbUUX A3bl-
Kosbix mooeneti 01a eepuguxayuu 110. Ilpakmuueckan 3HAUUMOCHb: 3aKIIOYAEMCS 8 NOBbIULEHUU KaYyecmed
u naoedxcrnocmu I10. Hccnedosanue umeem 6asicHoe sHavenue Oas pazeumus mexHoI02Ull Hceie3H000PONHCHO2O
MPAHCNOPMA U NOBbIULEHUS. HAOEHCHOCIU pabombl uH@opmayuonHvlx cucmem. QbcyrcoeHue: 8biCKa3vl8aom-
Csl peKOMEeHOayuu no OaibHeuuemMy cOBEPUEHCMBOBAHUIO NPEOTONCEHHOL CUCIeMbl 8epuduKrayuu, oceewa-
10MCsL 6ONPOCHI, Mpedyiowue OATbHeUUUX UCCIe008aHUL U PA3PAOOMOK.

KuaroueBble cioBa: bonvuiue A3v1ko8bie Mooenu, popmanvras eepugurayus, agmomamusayus cneyupurayuil,
Java Modeling Language, uckyccmeennbwlii unmesniexkm

1.2.1 — uckyccmeennwlii unmeniekm u mawunnoe ooyuenue (mexnuveckue nayku), 2.3.1 — cucmemnvlii ana-
JU3, ynpaeienue u 0opabomxka uHgopmayuu (mexHuieckue HayKiu)

BBenenue

@opmasbHbIe SI3bIKM cHENU(UKALUY, TaKue Kak
Java Modeling Language (JML) [1], ctanu He3aMeHU-
MBIMH 151 crielu(uKanuy U BepuHKaluu MOBeJe-
HUs Java-iporpaMMm. OTH MHCTPYMEHTHI MO3BOJISIOT
pa3paboTunKaM MOIYITbHO ONPEAEIATh MpPeaBapH-
TEJIbHBIE YCJIOBUS, MOCIEAYIOUINE YCIOBUS, HHBAPH-
aHTBI U YCJIOBHS KaJpa, YT0 OOBIYHO HA3bIBAETCS MPO-
eKTHpPOBaHHEM IO KOHTpakTy. B Hacrosiiee Bpems
UCTIONIB3YIOTCS JIeAyKTHBHAs BepuuKauus (C Hc-

MOJIH30BAaHUEM JIOKA3aTeIbCTBA TEOPEM M CHMBOJIBHO-
TO BBITIOJIHEHHSI), OTPAHUYCHHAs MTPOBEPKa Mojenen
(Ha OCHOBE T€OPHIA BHIMIOJIHUMOCTH (DOPMYJT) U HOBBIC
THOPHUIHBIE METO/IBI, BKITFOUAIOIIHE MAITUHHOE 00yUe-
HUE JJI1 aBTOMATHU3aIllUN TCHEPALH CIieIU(UKAITAiL.
Opnako pyuHoe co3manue aHHotaumii JML sB-
JSIETCSL CJIOKHBIM, TPYJOEMKHUM U TIOIBEPKCHHBIM
omubOkam mporieccoM. IlosBnenne momubx LLM
(aarn. Large Language Model — OGonbinas si3bIKO-

Intellectual Technologies on Transport. 2025. No. 4

47

UckyccmeeHHbIU UHmMeriekm U mpaHcriopmHbie cucmembi

Basg Mojenb, bSM) OTKpbBUIO HOBbIE BO3MOKHOCTH
JUTSl aBTOMAaTU3aIMK TeHepauu crenudukanuii JML.
Unrerpanus bAM ¢ popmanbHBIME METOAAMH MOKET
CHU3UTh TPYAOEMKOCTb PyYHOU pabOThl U MOBBICUTD
HaJEKHOCTh IpPOrpaMMHOro obecrieueHus. Tem He
MEHEE OCTaITCS CIEAYIOIUE TPOOIEeMBbI:

* 3aBHCHMOCTH OT KOHTekcTa — bM moryt ymy-
CKaTh U3 BUJly CEMAHTUKY KO/a, HallpuMep M0OOYHbIE
3¢ (deKTh METOIOB;

* cuHTaKkcudyeckue ommoku — BSIM MmoryT rene-
pypoBarh kox, HecoBMecTumblii ¢ JML. Mogenu re-
Hepalu Kofa TPeOyIOT JOMOTHUTEBHOW HACTPONKH,
MTOCKOJIBKY JIJIsl TOYHOW TeHepaInuy aHHOTAIni Heo00Xo-
JIMMEBI 0osiee 00beMHBIE 00yJaroIre HaOOPhI TaHHBIX;

* CEMAHTHUYECKasl HECONIACOBAHHOCTh — aBTOMa-
TUYECKHU CTEHEPUPOBAHHBIE KOHTPAKTHI MOTYT MPOTH-
BOPEUUTH MPEANONIAraeMom JIOTUKE NPUIT0KEHUSI.

Otu npobieMbl MOAPBIBAIOT JOBEPHE K aBTOMATH-
3UPOBAHHBIM PELICHUSIM W OTPaHUYMBAIOT UX MPH-
MEHHMMOCTh Ha MpakThke. B pesynbrare uzyueHue
BO3MOXkHOCTeH uHTerpauuu bJAM ¢ cumBOIBHOM Be-
pudukanueit Oyner UMeTh OONbIIOE 3HAUCHUE TS
CHIDKEHUS pabouel Harpy3Ku Mpu BepupHUKAIH IPO-
rpaMMHOTO 00ecIieueHus ¥ MOBBIIIEHUS KauyecTBa I10-
Jy4aeMOro IpOrpaMMHOI0 00ecrieyeHusl.

COOTBETCTBEHHO, LIEJIb UCCIIEIOBAHUS 3aKIII0UACT-
Csl B U3yUYE€HHUH TOYHOCTHU IeHepalunuu anHoTauuii JML
C UCIOJIb30BaHUEM «HEOOJBINX) SI3BIKOBBIX MOJIEIIEH
(mo 10 mnpa mapamMeTpoB) M OILIGHKE BO3MOXKHOCTH
UX WCIONB30BaHMs 0€3 JONMOJHUTENbHOW TOHKOM Ha-
CTPOWKH Ha MpUMepax Koja ¢ CyIIECTBYIOIIUMH aHHO-
Tauusmu JML.

Jnst mocTrkeHus: nenu Obutn chopMynupoBaHbI
CIIEIYIOLIHUE 3a1a4HU:

* IOATOTOBUTH TECTOBbIE MPHUMEPHI AJS IeHepa-
muu agHoTanuii JML;

* CreHepHpOBaTh AHHOTALMH U IPOBEPUTH UX;

* coOparh CTaTUCTUKY BBITIOJHEHUS U MTPOAHAIIH-
3MpOBATh KAUECTBO aHHOTALIUH.

CymecTByl0IIHe IOAX0bI K TeHepauuu
JML-cnenupuranui

TpaguIMOHHO MCIIONB30BATINCH HIA0JIOHHBIE Me-
Tozbl (Hanpumep, Houdini) 1 MHCTpyMEHTHI BbIBOAA
WHBAapHAHTOB Ha OCHOBE TeCTOB (Hampumep, Daikon).

Onu 3¢ dexkTuBHO paboTaIOT I MPOCTHIX crienudu-
Kalui, HO TUIOXO OMMUCHIBAIOT CJIOXKHYIO CEMaHTHKY
KPYIHBIX Java-nporpaMmm.

Hogetimue LLM-meronuku, Hanpumep SpecGen,
UCHOJBb3YIOT OOJIBIINE MOJENH JUIsl TOHUMAaHUs KOH-
TekcTa Koma | TeHepanuu JML-cnenudukanuii.
OOGBIYHO TIPUMEHSIETCSI HEOOBIIIOE KOJIUYECTBO MPH-
MEpOB, M 3aT€M CIEeHU(PHUKALUU YTOYHSIOTCS 10 pe-
3yJabTaTaM IPOBEPKH; UCHOJIB3YIOTCS MyTallud U IB-
puctuku otoopa [2, 3].

['mOpuHBIE TOAXOIBI HHTETPUPYIOT CTAaTHUECKUIH
anamm3 U NLP-MeTonp! 1T aBTOMaTHYECKOTO U3BIIE-
YeHHs TPEIUKATOB W OOOTaleHHs CrerupuKaui
(marmpumep, ipoekt DECODER): cratnueckwii aHa-
JIN3 TaeT HaJeKHbIE Mpeaukarbl, NLP — npenukars
W3 JIOKyMeHTaIuu [4].

JenyxtuBHas Bepu(UKAMS TEPEBOIUT AHHOTH-
pOBaHHBIE Java-niporpamMMBbl B JIOTHYECKUE (OPMYITHI;
JIOKA3aTeIbCTBO KOPPEKTHOCTH (DOpMyI ITOKa3bIBAET
KOppeKTHOCTh Kozma. Mucrpyment KeY — mnpumep
cpenbl Uisi MHTEPAaKTHUBHOTO JIOKa3aTelibCTBa C HC-
nonbs3oBaHueM Java Dynamic Logic [5, 6].

Meton BMC (Bounded Model Checking) uccneny-
€T IIPOCTPAHCTBO COCTOSHUI A0 3a/laHHOTO Mpejena,
pa3BopaurBas IUKJIBI U PEKYpPCHIO (PUKCHUPOBAHHOE
YUCTIO pa3 U mpoBepsisi cBoiicTBa SMT-pemarensimu.
[Tnroc — BBICOKasi aBTOMATU3aIUs U ObICTPhIE KOHTP-
pUMEpPbl, MUHYC — HETIOJIHOTA 32 MpeAesaMu IpaHu-
1Bl IpoBepku |7, 8].

LLM npumeHstoTCs sl aBTOMATU3aLUK CO3TaHUS
dopmanbHbIX cnienudukanuii. MyTupoBaHue U BpU-
CTHKH OTOOpa B COUETaHMU C BepUUKAIMEH Jal0T
yIIydIeHHbIe pe3ylbTaThl [9].

CoBMelieHrHE BBIBOJOB CTaTMYECKOIO aHajIu3a
u pesyabraroB NLP mo3BosseT momydath oOorarieH-
Hele JML-crierudukanum, uTepaTuBHas A0paboTKa
C yJacTHeM YeJIOBeKa MOBBIIIaeT KauyecTBo [4].

OavH M3 HOBEHIIMX NOAXOAOB YIYy4llaeT IeHe-
pauuio crenu@uKanuii 3a CYeT UCIOIB30BAHUS OIle-
paTtopoB MyTalM JUIS CO3MAHHS Pa3zHOOOPa3HBIX
BapMAHTOB — KaHAMIATOB. Kakaplii BapmaHT Tpo-
BEpsIETCsI, U DBPUCTHUECKAs CUCTEMa BHIOMpAET TOT,
KOTOPBIIl ¢ HaumOonbIIel BEPOSTHOCTBIO SBISETCS
npaBWiIbHBIM. Takoe B3aumojeiicTBue mexay bAM
u (hopmanpHON BepuUKaIuel 3HaYUTEIbHO IPEBOC-

48 WHmennekmyarbHble mexHornoa2uu Ha mpaHcriopme. 2025. Ne 4

Atrtificial Intelligence and Transport Systems

XOJIUT TPAAULIMOHHBIE CTATUYECKUE U OCHOBAHHBIE Ha
TecTax MeTo/Ibl, o0ecreunBas 0oiee BHICOKHE MoKa3a-
TEeJIM yCIEeTHOCTH pU Bajauaauuu [9].

IIpeanaraemslii MeTOX

[Ipennaraemplii METOA aBTOMAaTH3allMU TeHEPALIUU
u Bepudukanuu crerudukanuii JML cocrout u3 ye-
TBIPEX MOCIIEA0BATEIbHBIX 3TAIOB.

Ha mepBom »Tame reHepUpYIOTCS aHHOTAIWU.
BxomHbIM MaTepHranom sBIseTCS UCXOIHBIN KOJ| KJlac-
coB Java ¢ KOMMEHTapUsSIMHU Ha €CTECTBEHHOM SI3bIKE.
Ha sTom sTame ncnonb3yloTcsl JOKaJdbHO pa3BEpHY-
ThIE MOJIETTH C OTKPBITBIMU Becamu: Qwen2.5-coder,
CodeLlama n Deepseek-coder-v2 [10, 11].

CpaBHeHHE OCHOBHBIX ITapaMeTpOB MoJelneil npu-
BezZieHO B Ta0i. 1. Ocoboe BHUMaHUE yAeseTcs mapa-
MmeTpam (temneparypa 0,7, rmuHa koHTekcTa — 4096
TOKEHOB), KOTOpBIE TO3BOJSIOT JOCTHYHL OanmaHca
MEXTy KPeaTUBHOCTHIO M TOYHOCTBIO.

Ha Bropom »sTame mpoBOIMTCS CHHTaKCHYECKas
npoBepka. CreHeprpOBaHHbIE AHHOTAIIMU TPOBEPS-
IOTCS Ha HaJM4Me CHHTAKCMYECKHX OIIMOOK, THIIO-
rpadcKuX HECOOTBETCTBHI M KOH(MIMKTOB KOHTpPAaK-
TOB C TOMOIIbIO HMHCTpyMeHTa SpotBugs (Bepcus
4.8.3) [12]. KypHanbl OomMOOK 3aMUCBIBAIOTCS JIS
MOCJIEAYIOLIETO UCIIPABIICHUSI.

Ha tperbem stame — ¢QopmanbsHOll Bepuguka-
MU — creuuuKaluy J0JKHBI ObITh (POPMATIbHO
nposepensl B cpene OpenJML [13] (Bepcust 21-0.8)
C UCIOJIb30BaHUEM CUMBOJILHOTO BhINOMHEHUs 1 SMT
(Satisfiability Modulo Theories)-pemareneii (;rornue-
CKHX pemiareneil ¢ moaaepxkod teopwmii) (Z3). He-
yAadHble BepU(DUKAIIMH aHAIU3UPYIOTCS Ha MPEIMET
TaKWUX MPUYHH, KaK HEIOCTATOuHAas JeTaIH3amns KOH-
TPaKTa WM CEeMaHTHYECKUE HECOOTBETCTBUSI.

YeTBepThIii 3Tal — KIacCU(PUKAINS U HCTIPABICHHAE
omrOoK. CHHTaKcHYeCKHe OmMOKH OyIyT aBTOMAarH-
YECKH yAaJIeHbl CKPUIITAMH, & CEMAaHTHUECKHE OIUOKN
TpeOyIoT py4HOro BMellarenbcTBa. Pe3ynbrarsl 3amu-
CBIBAIOTCS] B MAaTPHILy OIIHOOK, KOTOpAst CITy>KHT OCHO-
BOM TS TaTbHEHIIIETO TepeoOyIeHUs] MOJIEIICH.

JIKCIePUMEHTAJIbHAsI YCTAHOBKA
OKcnepuMeHThI TpoBovIHeh Ha 11 kitaccax Java
nu3 mpumepoB koxa Ha BeO-caiite OpenJML [14].

Cpennuii pasmep kimacca coctasisain 50—100 ctpok
Kofla, @ (PyHKIIMOHAJIBHOCTh BKJIIOYAJia METO/bI C LU~
KJIaMH, YCJIIOBUSIMU M 00paboTkoi uckiatoueHuit. Ilo-
TEHIMAJIbHBIM OTPaHUYEHUEM HCCIIEOBAaHUS SIBIISET-
Csl OTHOCHUTENIbHO HEOOJBIION pa3Mep BBIOOPKH, UTO
UCKJIIOYAeT BO3MOXKHOCTBH 3KCTPANOJSILMKU Pe3yibTa-
TOB Ha Ooyiee KpyNHble MPOEKThI. JJi MOBBILLIEHUS
HAJIe)KHOCTH PE3yNbTaTOB IpPEUIaraeTcsl paciiupyuTh
Ha0Op TECTOBBIX CIIyYaeB B MOCIEAYIOMUX padoTax.

HccnenoBarensckass MH(pacTpykTypa BKIIOYAIa
MacBook Pro M1 ¢ 16 I'b yHudumupoBanHoi ma-
MSTH, KOTOPBI HCIOJB30BAJICS A Pa3BEPTHIBAHUS
LLM wu BeimosHeHUS (POPMATBLHBIX MPOIEAYP BEpH-
bukarum.

g OLleHKM NPOU3BOAMTEIBHOCTH HCIONb30Ba-
JUCh CIEMYIONINE METPHUKH:

* TOYHOCTH T€HEpAIMH — JO0JIsl aHHOTAIIHHA, TTPO-
HISIINX CHHTAaKCUYECKYI0 Bepr(UKALINIO;

* MPaBWIBHOCTh HMCXOIHOTO KOIAa — TMPOIEHT
CKOMITMJIMPOBAHHBIX KJIACCOB, MPOUIEIAIINX BepUu-
kauuto SpotBugs;

* Bpems 00paboTKHU Kiacca.

Hcxonuslii KO OSKCHEPUMEHTAJIbHOM YCTaHOB-
KU JIOCTYNIEH B PEMO3UTOPHM TMPOEKTa MO CCHUIKE
http://github.com/Gleavero/verification_system.

3akiaroueHue

OCHOBHOH BKJIaJl MPOBEIEHHOTO UCCIIEIOBaHMSI 3a-
KJIIOYaeTCsl B pa3paboTKe COBpeMeHHOU HH(ppacTpyK-
Typbl Bepu(UKALUU, KOTOpas 0O0beAUHSAET OONbLINE
SI3BIKOBBIC MOJIENIU C YTWJIMTAMH (OpPMalbHON BepH-
¢ukanmu, Takumu kak SpotBugs m OpenJML. DOra
AKOCUCTEMA 00JIer4aeT ONTUMH3HPOBAHHOE CO3aHHe
W ToATBepkIeHue crienudukanuii JML.

[TpenBapuTenbHBIE IKCIIEPUMEHTAIBHBIE PE3YIlb-
TaThl (Ta0JM. 2) MOKA3BIBAIOT, YTO MOJIEIH YMEPEHHOTO
pa3Mepa, XapaKTepU3yIOIIUecs: KOJIMYeCTBOM Iapa-
METPOB, HE HPEBBIIIAIONIUM 7 MIPJ, JEMOHCTPHUPY-
IOT CIIOCOOHOCTH T€HEPUPOBATh CUHTAKCHYECKH Ipa-
BUWJIbHBIE aHHOTAIINH.

OnHako ApQPEKTUBHOCTh ATHX MOJCTEH CHUKACT-
Csl M3-32 CMEIIAHHBIX MEPEMEHHBIX, B YACTHOCTH KOH-
TEKCTHBIX 3aBUCHMOCTEH M HENOCTAaTOYHO OoraTroro
HaOopa JaHHBIX, MCIOIB3YEMOr0 Ha dTare OOy4YeHusl.
[To pa3nmuuHBIM TecTaM CpenHssl TOYHOCTh TEHEPAIH

Intellectual Technologies on Transport. 2025. No. 4

49

UckycemeeHHbIl UHMenneKkm u mpaHcriopmHbsie cucmemb|

Tabnuya 1
CpaBHenue BSM, ucno/ib30BaHHbIX B padoTe
CodeLlama 7B Qwen-Coder 1.5 (7B) DeepSeek Coder 6B
HumanEval (Pass@1), % 34,8 41,3 72
Pa3mep koHTEeKCTa, TOKEHOB 16 ThIC. 8 ThIC. 16 ThIC.
Pasmep mozenu, mapameTpoB 7 Mapn 7 mMapa 6 MIpn
Hcnonp3oBanue namsatu, I'b 14 14 12
JInuenzus Ocobas (Meta) Apache 2.0 MIT
Tabnuya 2
Pe3yabTarsl Bepudukanumn
Metpuxka CodeLlama 7B Qwen-Coder 1.5 (7B) DeepSeek Coder 6B
YenemrHo CKOMITMITAPOBAHO, % 25,00 58,33 25,00
[Ipouwno uepes SpotBugs, % 8,33 8,33 8,33
[Mpouwno uepe3 OpenIML, % 8,33 8,33 8,33
Cpennee BpeMsi BepupHKAIIMU OTHOTO KJlacca, C 87,25 34,76 71,12

crierm¢ukanmiit JIML coctaBmia mpumepHo 8,33 %, Xotst
obun 1 siBHBIE Junepsl: Qwen-Coder 1.5 mponemoHn-
CTPUPOBAJ MaKCUMAJIbHYIO IPOM3BOIUTEILHOCTh HA
ypoBHe 58 %, a CodeLlama 7B noka3zan npomexyTou-
HbIE pe3yNbTarhl Ha ypoBHE 25 %. AHaIU3 NpPOTECTH-
POBaHHBIX KOH(UTYpaIfii BHISBUI HECKOJIBKO OOLIMX
HeocTaTkoB. K HUM OTHOCATCS HETOUHOCTH B OIIpesie-
JIEHUM [IPE/IBAPUTEIIbHBIX YCIIOBUH /U1l METOIOB, BbI3bI-
BaIOIIMX MOOOUHBIE APPEKThI, U CUCTEMAaTUYECKOE Hr-
HOPHPOBaHHE MHBAPUAHTOB Ha YPOBHE Ki1accos (8 %).
1o pe3ynbraraM SKCIIEpUMEHTOB IIpe/iIaraeMas Me-
TOZOJIOTHUSI OCTUTaeT TOYHOCTH Bepudukanuu 8,3 %,
YTO HUKE CTaHJApTOB, YCTAHOBIEHHBIX KOHKYpPEHTa-

CIIMCOK UCTOYHHUKOB

MU, y4dacTBOBaBIIMMHU B KOoHKypce SV-COMP [15].
Jlnst Gonee BBHICOKOW TOUHOCTH Te€Hepanuu crenudu-
Kalluil PEeKOMEHAYETCS HCIOIb30BaTh MOJIEIH, OC-
HalEHHBIE PACIIMPEHHBIMU KOHTEKCTHBIMU OKHAMU
(MuHEManbHAsA eMKocTh — 16 000 TokeHOB) Hapsay
C apXUTEKTYPHBIMU MacluTadamu, MPEBBIMIAIOIIIMH
10 mapn mapamerpoB, TunuuHbiMU Uit GPT-4 unu
ananTupoBaHHbiX Bepcuii CodelLlama. Mmeromuecs
JIAHHbIE CBUAETENbCTBYIOT O TOM, YTO UCIIOJIb30BAHHE
AJITOPUTMOB MAIIMHHOTO OOYYEHHs C CUHTETUYECKU-
MU Ha0OpaMu J1aHHBIX, aHHOTUPOBAHHBIMU Ha SI3bIKE
JML, cyiiecTBeHHO OBBIIIAET CEMaHTHUECKYHO KOre-
PEHTHOCTh MOIyYaeMbIX CrienupuKauil.

1. Leavens G. T., Cheon Y. Design by Contract with JML. 2006. 13 p. URL: http://www.academia.edu/26405390/
Design by Contract with JML (mara oopamenus: 07.11.2025).
2. SpecGen: Automated Generation of Formal Program Specifications via Large Language Models / L. Ma, S. Liu,

Y. Li// Proceedings of the 47th International Conference on Software Engineering (ICSE 2025) (Ottawa, Canada, 26 April —
06 May 2025). Institute of Electrical and Electronics Engineers, 2025. Pp. 16-28. DOI: 10.1109/ICSE55347.2025.00129.

3. Can Large Language Models Transform Natural Language Intent into Formal Method Postconditions? / M. Endres,
S. Fakhoury, S. Chakraborty, S. K. Lahiri // Proceedings of the ACM on Software Engineering. 2024. Vol. 1, Iss. FSE. Art.
No. 84. Pp. 1889-1912. DOI: 10.1145/366079.

4. Puccetti A., de Chalendar G., Gibello P.-Y. Combining Formal and Machine Learning Techniques for the Genera-
tion of JML Specifications // Proceedings of the 23rd ACM International Workshop on Formal Techniques for Java-like
Programs (FT{JP ‘21) (online, 13 July 2021). New York: Association for Computing Machinery. 2021. Pp. 59—64. DOI:
10.1145/3464971.3468425.

5. The Java Verification Tool KeY: A Tutorial / B. Beckert, R. Bubel, D. Drodt [et al.] // Formal Methods (FM 2024):
Proceedings of the 26th International Symposium (Milan, Italy, 09—13 September 2024). Part 2. Lecture Notes in Computer
Science. Vol. 14934 / A. Platzer [et al.] (eds). Cham: Springer, 2025. Pp. 597-623. DOI: 10.1007/978-3-031-71177-0_32.

50

WHmennekmyarbHble mexHornoa2uu Ha mpaHcriopme. 2025. Ne 4

Atrtificial Intelligence and Transport Systems

6. Hihnle R., Huisman M. Deductive Software Verification: From Pen-and-Paper Proofs to Industrial Tools // Comput-
ing and Software Science: State of the Art and Perspectives. Lecture Notes in Computer Science. Vol. 10000 / B. Steffen,
G. Woeginger (eds). Cham: Springer, 2019. Pp. 345-373. DOI: 10.1007/978-3-319-91908-9 _18.

7. Modular Verification of JML Contracts Using Bounded Model Checking / B. Beckert, M. Kirsten, J. Klamroth,
M. Ulbrich // Leveraging Applications of Formal Methods, Verification and Validation: Verification Principles (ISoLA
2020): Proceedings of the 9th International Symposium on Leveraging Applications of Formal Methods (Rhodes, Greece,
20-30 October 2020). Part 1. Lecture Notes in Computer Science. Vol. 12476 / T. Margaria, B. Steffen (eds). Cham:
Springer, 2020. Pp. 60-80. DOI: 10.1007/978-3-030-61362-4 4.

8. LiuT. Efficient Verification of Programs with Complex Data Structures Using SMT Solvers: A Thesis for the Degree
of Doctor of Natural Science. Karlsruhe Institute of Technology, 2018. 173 p. DOI: 10.5445/IR/1000084545.

9. SpecEval: Evaluating Code Comprehension in Large Language Models via Program Specifications / L. Ma, S. Liu,
L. Bu [et al.] // ArXiv. 2025. Vol. 2409.12866. 12 p. DOI: 10.48550/arXiv.2409.12866.

10.Code Llama: Open Foundation Models for Code / B. Roziére, J. Gehring, F. Gloeckle [et al.] / ArXiv. 2024.
Vol. 2308.12950. 48 p. DOI: 10.48550/arXiv.2308.12950.

11.Qwen Technical Report / J. Bai, S. Bai, Y. Chu [et al.] // ArXiv. 2023. Vol. 2309.16609. 59 p. DOI: 10.48550/arX-
1v.2309.16609.

12.SpotBugs Manual — SpotBugs 4.9.8 Documentation. URL: http://spotbugs.readthedocs.io/en/latest/index.html
(mara obpamenus: 07.11.2025).

13.About OpenJML. URL: http://www.openjml.org/about (nata odpamenwus: 07.11.2025).

14.0OpenJML Examples. URL: http://www.openjml.org/examples (gara obpammenus: 07.11.2025).

15.Beyer D., Strejéek J. Improvements in Software Verification and Witness Validation: SV-COMP // Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS 2025): Proceedings of the 31st International Conference
(Hamilton, Canada, 03—08 May 2025). Part 3. Lecture Notes in Computer Science. Vol. 15698 / A. Gurfinkel, M. Heule
(eds). Cham: Springer, 2025. Pp. 151-186. DOI: 10.1007/978-3-031-90660-2_9.

Hara noctymienuns: 15.11.2025
Pemmenue o myonukaruu: 18.11.2025

Intellectual Technologies on Transport. 2025. No. 4 51

UckyccmeeHHbIU UHmMeriekm U mpaHcriopmHbie cucmembi

Formal Verification of Software Using Large Language Models

Pavel A. — Master of Engineering, Postgraduate Student of the “Computer Science and Computer

Melnikov Engineering” Department. Research interests: software reliability, artificial intelligence,
software verification. E-mail: gleavero@gmail.com

Andrey A. — Dr. Sci. in Engineering, Assistant Professor, Professor of the “Computer Science and Computer

Tyugashev Engineering” Department. Research interests: artificial intelligence, software development,

software reliability. E-mail: tau797@mail.ru

Automation and Information Technology Institute, Samara State Technical University, 244, Molodogvardeyskaya
str., Samara, 443100, Russia

For citation: Melnikov P. A., Tyugashev A. A. Formal Verification of Software Using Large Language Models.
Intellectual Technologies on Transport, 2025, No. 4 (44), Pp. 47-53. DOI: 10.20295/2413-2527-2025-444-47-53.
(In Russian)

Abstract. This study presents an exploration of the application of large language models for software
verification. Purpose: to create a system for the automatic verification of software for specified requirements.
Information technologies, formal verification, artificial intelligence, and other innovative approaches have
been used to achieve this goal. Methods: analysis of current tools and technologies for software verification,
including existing instruments. Results: the research highlights the strengths and weaknesses associated with
the use of large language models for software verification. Practical significance: enhancing the quality and
reliability of software is crucial. This research is important for advancing railway transportation technologies
and increasing the reliability of information systems. Discussion: recommendations have been formulated for
Sfurther improvement of the proposed verification system. Additionally, the issues requiring further research and
development have been highlighted.

Keywords: large language models, formal verification, specification automation, Java Modeling Language,
artificial intelligence

REFERENCES

1. Leavens G.T., CheonY. Design by Contract with JML. 2006. 13 p. Available at: http://www.academia.edu/26405390/
Design by Contract with JML (accessed: November 07, 2025).

2. MalL., LiuS., LiY. SpecGen: Automated Generation of Formal Program Specifications via Large Language Models,
Proceedings of the 47th International Conference on Software Engineering (ICSE 2025), Ottawa, Canada, April 26 —
May 06, 2025. Institute of Electrical and Electronics Engineers, 2025, Pp. 16-28. DOI: 10.1109/ICSE55347.2025.00129.

3. Endres M., Fakhoury S., Chakraborty S., Lahiri S. K. Can Large Language Models Transform Natural Language
Intent into Formal Method Postconditions? Proceedings of the ACM on Software Engineering, 2024, Vol. 1, Iss. FSE, Art.
No. 84, Pp. 1889-1912. DOI: 10.1145/366079.

4. Puccetti A., de Chalendar G., Gibello P.-Y. Combining Formal and Machine Learning Techniques for the Genera-
tion of JML Specifications, Proceedings of the 23rd ACM International Workshop on Formal Techniques for Java-like
Programs (FTfJP ‘21), Online, July 13, 2021. New York, Asso7un 1&7ciation for Computing Machinery, 2021, Pp. 59—
64. DOI: 10.1145/3464971.3468425.

5. Beckert B., Bubel R., Drodt D., et al. The Java Verification Tool KeY: A Tutorial. In: Platzer A., et al. (eds) Formal
Methods (FM 2024): Proceedings of the 26th International Symposium, Milan, Italy, September 09—13, 2024. Part 2. Lec-
ture Notes in Computer Science. Vol. 14934. Cham, Springer, 2025, Pp. 597-623. DOI: 10.1007/978-3-031-71177-0_32.

52 WHmennexkmyarnbHble mexHonoauu Ha mparcropme. 2025. Ne 4

Atrtificial Intelligence and Transport Systems

6. Hahnle R., Huisman M. Deductive Software Verification: From Pen-and-Paper Proofs to Industrial Tools. In: Steffen B.,
Woeginger G. (eds) Computing and Software Science: State of the Art and Perspectives. Lecture Notes in Computer Sci-
ence. Vol. 10000. Cham, Springer, 2019, Pp. 345-373. DOI: 10.1007/978-3-319-91908-9 18.

7. Beckert B., Kirsten M., Klamroth J., Ulbrich M. Modular Verification of JML Contracts Using Bounded Model
Checking, In: Margaria T., Steffen B. (eds) Leveraging Applications of Formal Methods, Verification and Validation: Veri-

fication Principles (ISoLA 2020): Proceedings of the 9th International Symposium on Leveraging Applications of Formal
Methods, Rhodes, Greece, October 20-30, 2020. Part 1. Lecture Notes in Computer Science. Vol. 12476. Cham, Springer,
2020, Pp. 60-80. DOI: 10.1007/978-3-030-61362-4 4.

8. LiuT. Efficient Verification of Programs with Complex Data Structures Using SMT Solvers: A Thesis for the Degree
of Doctor of Natural Science. Karlsruhe Institute of Technology, 2018, 173 p. DOI: 10.5445/IR/1000084545.

9. Ma L., Liu S., Bu L., et al. SpecEval: Evaluating Code Comprehension in Large Language Models via Program
Specifications, ArXiv, 2025, Vol. 2409.12866, 12 p. DOI: 10.48550/arXiv.2409.12866.

10.Roziére B., Gehring J., Gloeckle F., et al. Code Llama: Open Foundation Models for Code, ArXiv, 2024,
Vol. 2308.12950, 48 p. DOI: 10.48550/arXiv.2308.12950.

11.Bai J., Bai S., Chu Y., et al. Qwen Technical Report, ArXiv, 2023, Vol. 2309.16609, 59 p. DOI: 10.48550/arX-
1v.2309.16609.

12.SpotBugs Manual — SpotBugs 4.9.8 Documentation. Available at: http://spotbugs.readthedocs.io/
en/latest/index.html (accessed: November 07, 2025).

13.About OpenJML. Available at: http://www.openjml.org/about (accessed: November 07, 2025).

14.0OpenJML Examples. Available at: http://www.openjml.org/examples (accessed: November 07, 2025).

15.Beyer D., Strejéek J. Improvements in Software Verification and Witness Validation: SV-COMP. In: Gurfinkel A.,
Heule M. (eds) Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2025). Proceedings of the 3 Ist
International Conference, Hamilton, Canada, May 03—08, 2025. Part 3. Lecture Notes in Computer Science. Vol. 15698.
Cham, Springer, 2025, Pp. 151-186. DOI: 10.1007/978-3-031-90660-2 9.

Received: 15.11.2025
Accepted: 18.11.2025

Intellectual Technologies on Transport. 2025. No. 4 53

