Russian Federation
Russian Federation
Russian Federation
To model the junction of a single-vault station segment with a diaphragm wall, escalator and interstation tunnels using a three-dimensional framework. Methods: Mathematical modelling by the finite element method. Results: A comprehensive three-dimensional model has been created, incorporating the ground massive, station lining, support tunnels, and a diaphragm wall, as well as the linings of the interstation and escalator tunnels. The analysis has revealed that the deformations of the station lining and the stresses in the blocks vary by a factor of 1.5 to 2, depending upon the geomechanical model of the ground massive utilised and the approach taken to calculate the characteristics of the interface elements. Notably, a reduction in the stiffness coefficients of the interface elements results in increased deformations and a decrease in the stresses within the lining elements. Therefore, it is recommended to conduct calculations for maximum deformations and maximum stresses concurrently, applying various characteristics of the interface elements. Practical significance: The findings of the study can be applied during the design phase of single-vault stations with prefabricated block lining.
Metro, single-vault station, mathematical modelling, finite elements method, FEM
1. Kunec D. V. Obespechenie ekspluatacionnoy nadezhnosti konstrukciy, vstroennyh v odnosvodchatye stancii Peterburgskogo metropolitena: diss. … kand. tehn. nauk: special'nost' 05.23.11 / D. V. Kunec. — SPb., 2015. — 164 s.
2. Kraev Yu. K. Optimizaciya zhestkosti arkifermy, primenyaemoy pri stroitel'stve stanciy Ekaterinburgskogo metropolitena / Yu. K. Kraev // Izvestiya vysshih uchebnyh zavedeniy. Gornyy zhurnal. — 2009. — № 8. — S. 54–55.
3. Bil'chenko A. V. Obosnovanie vybora konstrukcii odnosvodchatoy stancii pri stroitel'stve metropolitenov metodom skvoznoy prohodki / A. V. Bil'chenko, V. A. Golesko, A. S. Holodcova // Modernizaciya i nauchnye issledovaniya v transportnom komplekse. — 2012. — T. 3. — S. 355–364.
4. Kraev Yu. K. Dvuh'yarusnyy peresadochnyy uzel v perspektive stroitel'stva stancii «Teatral'naya» Ekaterinburgskogo metropolitena / Yu. K. Kraev, E. A. Rivkina // Izvestiya vysshih uchebnyh zavedeniy. Gornyy zhurnal. — 2009. — № 2. — S. 63–65.
5. Kunec D. V. Matematicheskoe modelirovanie deformirovannogo sostoyaniya konstrukciy odnosvodchatyh stanciy metropolitena / D. V. Kunec // Izvestiya vysshih uchebnyh zavedeniy. Gornyy zhurnal. — 2009. — № 8. — S. 49–53.
6. Frolov Yu. S. Osobennosti staticheskoy raboty obdelki i vstroennyh konstrukciy odnosvodchatyh stanciy Sankt-Peterburgskogo metropolitena v processe dlitel'noy ekspluatacii / Yu. S. Frolov, A. N. Kon'kov, D. V. Kunec // Promyshlennoe i grazhdanskoe stroitel'stvo. — 2011. — № 5. — S. 27–29.
7. Shen' C. Obosnovanie konstruktivno-tehnologicheskih resheniy pri stroitel'stve odnosvodchatyh stanciy metropolitena v maloprochnyh skal'nyh gruntah / C. Shen', Yu. S. Frolov // Podzemnye gorizonty. — 2019. — № 22. — S. 28–32.
8. Shen' C. Reshenie geomehanicheskih zadach pri stadiynoy tehnologii raskrytiya vyrabotok bol'shogo proleta v maloprochnyh skal'nyh gruntah / C. Shen', Yu. S. Frolov // Internet-zhurnal «Transportnye sooruzheniya». — 2019. — № 3. — URL: https://t-s.today/PDF/ 14SATS319.pdf (data obrascheniya: 28.09.2021). — DOI:https://doi.org/10.15862/14SATS319.
9. Frolov Yu. S. Vliyanie metodov poetapnogo raskrytiya vyrabotki bol'shogo proleta na napryazhenno-deformirovannoe sostoyanie sistemy «krep' — gruntovyy massiv» / Yu. S. Frolov, C. Shen' // Vestnik Sibirskogo gosudarstvennogo universiteta putey soobscheniya. — 2019. — № 1(48). — S. 73–83.
10. Frolov Yu. S. Prognoz geomehanicheskih processov pri sooruzhenii stancii metropolitena v skal'nyh gruntah / Yu. S. Frolov, C. Shen' // Putevoy navigator. — 2020. — № 44(70). — S. 50–59.
11. Yang X. Research on prefabricated metro station structure and key assembly technologies / X. Yang, F. Lin // Tunnelling and Underground Space Technology. — 2024. — Vol. 153. — DOI:https://doi.org/10.1016/j.tust.2024.106029.
12. Gao D. Failure mechanism of deep-buried and large cross-section subway station tunnel: Geo-mechanical model test and numerical investigation / D. Gao, Y. Shen, P. Zhou, A. Gou et al. // Tunnelling and Underground Space Technology. — 2025. — Vol. 155, Part 1. — DOI:https://doi.org/10.1016/j. tust.2024.106148.
13. Haixiang L. Support mechanical response analysis and surrounding rock pressure calculation method for a shal- low buried super large section tunnel in weak surrounding rock / L. Haixiang, W. Xiuying, T. Zhongsheng, Z. Jinpeng et al. // Scientific Reports. — 2024. — Vol. 14. — DOI:https://doi.org/10.1038/s41598-024-64522-6.
14. Sehnalova P. Metro Station Pankrac — Modelling and Analysis in Midas GTS NX / P. Sehnalova, M. Urban- kova. — URL: https://resource.midasuser.com/en/blog/geo- tech/metro-station-pankrac#complicated (data obrascheniya: 28.09.2021).
15. Ledyaev A. P. Matematicheskoe modelirovanie bloch- noy obdelki tonnelya bol'shogo diametra / A. P. Ledyaev, A. A. Sokornov, A. N. Kon'kov // Izvestiya Peterburgskogo universiteta putey soobscheniya. — SPb.: PGUPS, 2025. — T. 22. — Vyp. 3. — S. 605–615. — DOI:https://doi.org/10.20295/1815- 588X-2025-3-605-615.



