Russian Federation
Objective: to develop and apply software for automatic finding of discrepancies in automated meteorological stations in order to identify dubious and unreliable data without direct manual control in Fortran using PostgreSQL programming language queries. Write a program block for processing data from the archive of the database of meteorological stations of the unified network. Having provided a connection, with the help of requests, to ensure the receipt of data of the averaged values of ten-minute meteorological reports according to a special processing technique. Create a subroutine for solving the equation by the least squares matrix method, compare it to check the results with the linear regression method in a third-party application. Ensure proper recording of data before sending them to the database, prepare the necessary table for correct demonstration of data and user convenience in their use. Formulate correct queries to send the results of finding the discrepancy to the database. Formulate queries to create the necessary table, formulate queries and identify conditions for the implementation of the program for its more “flexible”functioning, that is, the ability to process data and find a discrepancy in the case of non-daily operation of the program. Methods: the methodology is similar to the principles of recommendations for the analysis of the results of spatial monitoring of regime meteorological information of the Main Geophysical Observatory named after Voeikova A. I. Methods include the translation of coordinates into a Cartesian system and the implementation of the solution of equation systems by the least squares method. Results: a program has been created that can work without the participation of an operator, performing automatic startup, data processing and data recording for further storage. Practical importance: the program allows you to receive data quickly due to the fast processing speed without errors caused by the human factor.
discrepancy, automatic processing, weather stations, Fortran programming language, PostgreSQL
1. Kolomeets L. I., Smyshlyaev S. P. Direct and indirect effects between thunderstorm activity, temperature and atmosphere composition on a regional scale: sensitive tests with WRF-CHEM. Proceedings of MGO. 2016. Vol. 585. P. 187–211.
2. Bocharnikov N. V., Brylev G. B., Kuznecova L. I. i dr. Avtomatizirovannye meteorologicheskie radiolokacionnye kompleksy «Meteoyacheyka». SPb.: Gidrometizdat, 2007. 236 s.
3. Fabry F. Radar Meteorology: Principles and Practice. Cambridge: Cambridge University Press, 2015.
4. Romps D. M., Seeley J., Vollaro D., et al. Projected increase in lightning strikes in the United States due to global warming // Science. 2014. V. 346. R. 851–854.
5. Kolomeets L. I., Smyshlyaev S. P. Regional and global lightning activity effect on the composition and properties of the upper troposphere/lower stratosphere. Proceedings of SPIE The International Society for Optical Engineering. 27. Ser. 27th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, 2021. S. 1191671.
6. Gavrilova S. Yu., Ivanova T. A., Luc'ko L. V. i dr. O sostoyanii i funkcionirovanii avtomatizirovannyh meteorologicheskoy i aktinometricheskoy setey v 2017 godu. Trudy Glavnoy geofizicheskoy observatorii im. A. I. Voeykova. 2018. № 588. S. 86–109.
7. Bocharnikov N. V., Yakimaynen N. A. Ispol'zovanie dannyh meteorologicheskih radiolokatorov pri meteoobespechenii aviacii. V sb.: Trudy Mezhdunarodnoy konferencii po aviacionnoy i sputnikovoy meteorologii. SPb.: Izd. RGGMU, 2008. S. 145–148.
8. Lyalyushkin A. S. Optimizaciya strategii skanirovaniya doplerovskogo meteorologicheskogo radiolokatora. V sb.: Trudy Mezhdunarodnoy konferencii po aviacionnoy i sputnikovoy meteorologii. SPb.: Izd. RGGMU, 2008. S. 153–158.
9. Solonin A. S. Sostoyanie i perspektivy razvitiya avtomatizirovannyh sistem meteorologicheskogo obespecheniya aviacii. V sb.: Trudy Mezhdunarodnoy konferencii po aviacionnoy i sputnikovoy meteorologii. SPb.: Izd. RGGMU, 2008. S. 11–14.
10. Sikarev I. A., Chestnov A. I., Abramov V. M. Aspekty razrabotki i dal'neyshie perspektivy programmy avtomaticheskoy obrabotki sputnikovyh arhivov gidrohimicheskih dannyh na yazyke programmirovaniya Python // Problemy informacionnoy bezopasnosti. Komp'yuternye sistemy. 2022. № 4 (52). S. 101–109.
11. Abramov V. M., Sikarev I. A., Chestnov A. I. i dr. Avtomatizirovannaya obrabotka arhivov meteorologicheskih dannyh s pomosch'yu programmy na yazyke Python // Rechnoy transport (XXI vek). 2022. № 4 (104). S. 53–55.
12. Chestnov A. I., Sikarev I. A., Abramov V. M. Razrabotka programmy dlya avtomaticheskoy obrabotki dannyh napravleniy vetra // Informacionnye tehnologii i sistemy: upravlenie, ekonomika, transport, pravo. 2022. № 4 (44). S. 117–121.
13. Bazlova T. A., Bocharnikov N. V., Solonin A. S. Avtomatizirovannaya sistema meteorologicheskogo obespecheniya sluzhby soderzhaniya avtomobil'nyh do- rog // Dorogi Rossii HXI veka. 2002. № 1. S. 93–95.
14. Chestnov A. I., Abramov V. M., Golosovskaya V. A. i dr. Sozdanie maketa sistemy po avtomatizacii obrabotki dannyh v stroitel'noy klimatologii dlya proektirovaniya ob'ektov rechnogo transporta // Transportnoe delo Rossii. 2022. № 2. S. 212–216.
15. Sikarev I. A., Chestnov A. I., Abramov V. M. Aspekty razrabotki i dal'neyshie perspektivy.. S. 101–109.
16. Chestnov A. I., Sikarev I. A., Abramov V. M. Avtomatizaciya processa po nahozhdeniyu vybrosov v meteorologicheskih arhivah s pomosch'yu yazyka programmirovaniya Python. V sb.: Innovacionnye metody matematiki i fiziki v ekologicheskih i gidrometeorologicheskih issledovaniyah. Sbornik trudov Vserossiyskoy nauchno-prakticheskoy konferencii; pod red. I. V. Zaycevoy. SPb., 2023. S. 245–250.
17. Sikarev I. A., Abramov V. M., Chestnov A. I. i dr. Razrabotka i primenenie programmy dlya avtomaticheskogo nahozhdeniya vybrosov v meteorologicheskih arhivah // Morskaya radioelektronika. 2023. № 2 (84). S. 32–35.