Russian Federation
Russian Federation
Russian Federation
UDK 625.1 Железные дороги в целом. Железнодорожные линии. Железнодорожное строительство
UDK 628.2 Канализация. Канализационные сооружения и системы
Purpose: To develop a rockfill dam hydraulic calculation method based on the latest research on filtration erosion rate in coarse-grained materials at the contact with surrounding soils as well as the dependence of the geotextile filtration properties in the frozen state on its water loss coefficient. Methods: The erosion rate at the contact of coarse-grained materials with clay soils is proposed to be calculated by the formula developed at the Vedeneev All-Russia Institute of Hydraulic Engineering. The geotextile filtration properties in the frozen state have been tested using the water loss coefficient of these materials. Results: The proposed dependence for calculating the erosion rate of soils at the contact with coarse-grained materials has been obtained specifically for filtration facilities. It is not designed for open flows (in the updated VSN 61-89 Construction Norms, these recommendations remained unchanged); therefore, it provides more substantiated results taking into account soils and coarse-grained material properties. Since filtering embankments are built in the soils prone to climate-induced variability, the geotextile material separating layers should be calculated taking into account the water-loss coefficient that significantly affects their ability to filter, especially in their frozen state. Practical significance: The proposed method of hydraulic and filtration calculation of filtering embankments will allow designing more adequate protective measures for eliminating erosion.
Filtering embankments, hydraulic calculation of filtering embankments, protection against slope erosion, filtration properties of geotextiles in a frozen state, water-loss coefficient
1. Bogomolova N. Features of engineering surveys in areas of permafrost prevalence by the example of the project “northern latitudinal way” / N. Bogomolova, Y. Milyushkan S. Shkurnikov et al. // Transportation Soil Engineering in Cold Regions: Proceedings of TRANSOILCOLD 2019, Saint Petersburg, April 15–22, 2019. — Vol. 2. — Singapore: Springer Nature, 2019. — Pp. 215–221. — DOI:https://doi.org/10.1007/978-981-15-0454-9_23.
2. Shtykov V. I. Gidravlicheskiy raschet bespolostnogo plastovogo drenazha pri gruntovom napornom pitanii / V. I. Shtykov, A. V. Kozlova // Izvestiya Vserossiyskogo nauchno-issledovatel'skogo instituta gidrotehniki im. B. E. Vedeneeva. — 2007. — T. 247. — S. 84–90.
3. Shtykov V. I. Bespolostnoy drenazh periodicheskogo profilya / V. I. Shtykov, Yu. G. Yanko // Melioraciya i vodnoe hozyaystvo. — 2009. — № 4. — S. 35–37.
4. VSN 61—89. Izyskaniya, proektirovanie i stroitel'stvo zheleznyh dorog v rayonah vechnoy merzloty / CNIIS Mintranstroya SSSR. — M.: CNIIS, 1990. — 208 s.
5. Zhilenkov V. N. Gidrodinamicheskie usloviya kontaktnogo razmyva glinistyh gruntov fil'tracionnym potokom / V. N. Zhilenkov, N. I. Shevchenko // Izvestiya Vserossiyskogo nauchno-issledovatel'skogo instituta gidrotehniki im. B. E. Vedeneeva. — 1980. — T. 144. — S. 11–19.
6. Zhilenkov V. N. O soprotivlyaemosti glinistyh gruntov kontaktnomu razmyvu zhil'tracionnym potokom / V. N. Zhilenkov, N. I. Shevchenko // Izvestiya Vserossiyskogo nauchno-issledovatel'skogo instituta gidrotehniki im. B. E. Vedeneeva. — 1981. — T. 146. — S. 55–67.
7. Shtykov V. I. O raschete razmyvayuschih skorostey pri proektirovanii fil'truyuschih sooruzheniy v svyaznyh gruntah / V. I. Shtykov, A. B. Ponomarev, Yu. G. Yanko // Izvestiya Peterburgskogo universiteta putey soobscheniya. — 2021. — T. 18. — № 2. — S. 303–312. — DOI:https://doi.org/10.20295/1815-588X-2021-2-303-312.
8. Shtykov V. I. O dopolnitel'nyh trebovaniyah, pred'yavlyaemyh k zaschitno-fil'truyuschim materialam zakrytyh drenazhey pri zalozhenii ih v zone sezonnogo promerzaniya gruntov / V. I. Shtykov, A. B. Ponomarev // Inzhenerno-stroitel'nyy zhurnal. — 2012. — № 4(30). — S. 39–45. — DOI:https://doi.org/10.5862/MCE.30.6.
9. Gulyuk G. G. Rukovodstvo po melioracii poley / G. G. Gulyuk, Yu. G. Yanko, V. I. Shtykov i dr. — SPb.: Federal'noe gosudarstvennoe avtonomnoe obrazovatel'noe uchrezhdenie vysshego obrazovaniya «Sankt-Peterburgskiy politehnicheskiy universitet Petra Velikogo», 2020. — 219 s. — DOI:https://doi.org/10.25695/k9292-1099-3543-i.
10. Yan H. Modelling the effects of water chemistry and flowrate on clay erosion / H. Yan, M. Sedighi, A. Jivkov // Engineering Geology. — 2021. — Vol. 294. — DOI:https://doi.org/10.1016/j.enggeo.2021.106409.
11. Siddiqua S. Evaluating Turbulent Flow in Large Rockfill / S. Siddiqua, J. A. Blatz, N. C. Privat // Journal of Hydraulic Engineering. — 2011. — Vol. 137. — Iss. 11. — Pp. 1462–1469. — DOI:https://doi.org/10.1061/(ASCE)HY.1943- 7900.0000442.
12. Smith N. S. Numerical Modeling of the Effects of Toe Configuration on Throughflow in Rockfill Dams / N. S. Smith, G. H. R. Ravindra, F. G. Sigtryggsdóttir // Water. — 2021. — Vol. 13. — P. 1726. — DOI:https://doi.org/10.3390/w13131726.
13. Ferdos F. Hydraulic Conductivity of Coarse Rockfill used in Hydraulic Structures / F. Ferdos, A. Wörman, I. Ekström // Transport in Porous Media. — 2015. — Vol. 108. — Pp. 367–391. — DOI:https://doi.org/10.1007/s11242-015-0481-1.
14. Martins R. Turbulent seepage flow through rockfill structures / R. Martins // International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. — March 1990. — Vol. 42. — Iss. 3. — Pp. 41–45. — DOI:https://doi.org/10.1016/0148-9062(90)90640-N.
15. Bonelli S. Erosion in Geomechanics Applied to Dams and Levees / S. Bonelli, F. Nicot // Erosion in Geomechanics Applied to Dams and Levees. — 2013. — 388 p. — DOI:https://doi.org/10.1002/9781118577165