IMPROVEMENT OF GONDOLA SIDE PILLAR RESOURCE TESTING METHODOLOGY WITH RESPECT TO TEST LOAD DETERMINATION
Abstract and keywords
Abstract (English):
Purpose: The existing method of the dynamic load calculation is used for free-standing pillars that are not affected by other load-bearing elements of the car body such as end walls, cant rail, side wall paneling, etc. The purpose of this work is to improve the method of resource testing of gondola car side pillars in terms of determining the test load. Methods: The analysis of existing methods of resource testing of gondola car pillar sealing units has been performed. To assess the stress state of the side pillars, the load on the gondola car side wall pillars has been calculated taking into account the influence of the gondola car body components on the stress state of the pillar sealing unit. The impact of the cant rail and end wall on the pillar sealing has been determined and the strength of different gondola car models has been calculated taking into account the sealing in the end wall and without it. The modelling of the gondola car strength calculation has been performed using a specialized software package in order to determine the influence of the cant rail of the end walls on the stress state of the car body. Results: The tests carried out demonstrated the validity of the methodology used. This methodology has confirmed that the service life of the gondola car pillar sealing units is 32 years. The tests have shown that the end walls reduce the stress placed on the sidewall pillars. Practical significance: The side pillar is a key element of the gondola car frame and it supports the majority of the Rankine’s loads during cargo transportation. The improved methodology is a comprehensive system of measures designed to check the reliability and durability of the structure and will ensure the gondola car safe operation.

Keywords:
Gondola car, resource tests, calculation, methodology, side pillars, pillar sealing unit
Text
Text (PDF): Read Download
References

1. Transport v Rossii. Statisticheskiy sbornik. 2024: Stat. sb. / Rosstat. — M., 2024. — 100 s.

2. Proizvodstvo gruzovyh vagonov v 2024 godu — Ob'edinenie vagonostroiteley. — URL: https://souzovs.com/press-center/news/proizvodstvo-gruzovykh-vagonov-v-2024-godu/ (data obrascheniya: 23.01.2025).

3. Bityuckiy A. A. Issledovanie ustalostnoy prochnosti zadelok stoek bokovoy steny novoy konstrukcii kuzova poluvagona / A. A. Bityuckiy, A. E. Afanas'ev; pod red. A. A. Bityuckogo // Sb. nauch. tr.; Inzhenernyy centr vagonostroeniya. — SPb.: OM-Press, 2009. — Vyp. 7. — S. 62–72.

4. Bityuckiy A. A. Sovershenstvovanie uzla zadelki stoyki bokovoy steny poluvagona modeli 12-9833 po kriteriyu ustalostnoy prochnosti / A. A. Bityuckiy, A. E. Afanas'ev; pod red. A. A. Bityuckogo // Sb. nauch. tr.; Inzhenernyy centr vagonostroeniya. — SPb.: OM-Press, 2010. — Vyp. 8. — S. 31–41.

5. Bityuckiy A. A. Stendovye ispytaniya na soprotivlenie ustalosti maketnyh uzlov krytogo vagona dlya perevozki avtomobiley / A. A. Bityuckiy, A. E. Afanas'ev, I. A. Hilov, V. I. Gus'kov // Transport Rossiyskoy Federacii. — SPb., 2015. — № 3(58). — S. 81–85.

6. Pisarenko G. S. Spravochnik po soprotivleniyu materialov / G. S. Pisarenko, A. P. Yakovlev, V. V. Matveev; otv. red. G. S. Pisarenko. — 2-e izd., pererab. i dop. — Kiev: Nauk. dumka, 1988. — 736 s.

7. Normy dlya rascheta i proektirovaniya vagonov zheleznyh dorog MPS kolei 1520 mm (nesamohodnyh). — M.: GosNIIV; VNIIZhT, 1996. — 319 s.

8. GOST 33211—2014. Vagony gruzovye. Trebovaniya k prochnosti i dinamicheskim kachestvam. — M.: Standartinform, 2020. — 26 s.

9. Dodonov A. V. Razrabotka i aprobaciya metodiki resursnyh ispytaniy uzla zadelki stoyki vagona-platformy dlya lesomaterialov / A. V. Dodonov, A. E. Afanas'ev, A. A. Homenko, A. A. Ivanov // Transport Urala. — 2019. — № 1(60). — S. 45–51.

10. GOST 33788—2016. Vagony gruzovye i passazhirskie. Metody ispytaniy na prochnost' i hodovye kachestva. — M.: Standartinform, 2016. — 42 s.

Login or Create
* Forgot password?