Russian Federation
Purpose: To analyze international experience in detecting the causes of the intermediate rail fastener failure. Currently, quite a lot of rail fastener designs have been developed for various operating conditions and many computational and laboratory methods for determining their operability have been created. At the same time, the issue of predicting and verifying the service life of the rail fastener and maintaining its vibration resistant properties remains open. Methods: Comparative analysis of computational models for determining the stress state of intermediate rail fastener elements; laboratory and field tests in various operating conditions. The results of cyclic fatigue bench tests do not always agree with the results of in-situ tests on a railway line in operation. At the same time, failures of rail fasteners different types occur due to the failure of different elements of the fastener assembly. The article discusses the issues of maintaining the vibration resistant properties of rail fasteners in service, the causes of fastener failure and the issues of service life verification. Results: An elastic clip has been identified as the element causing the majority of the entire fastener unit failures. Research papers claiming that the resonance vibration due to rail undulatory wear is the main cause of the elastic clip failure have been considered, as well as those claiming that the clamp failure is due to increased axle loads. Practical significance: The foundations have been laid for the development of measures to reduce or prevent the destruction of elastic clips of intermediate rail fasteners in service.
Rail fastener, elastic clip, damping gasket, dowel, service life, fatigue strength, service life
1. Kun L. Influence analysis on the effect of rail fastening parameters on the vibration response of track-bridge system / L. Kun, X. Lei, Sh. Zeng // Advances in Mechanical Engineering. — 2017. — Vol. 9(8). — Pp. 1–8. — DOI:https://doi.org/10.1177/1687814017702839. — URL: https://journals.sagepub.com/ doi/full/10.1177/1687814017702839.
2. Ma D. Failure analysis of fatigue damage for fastening clips in the ballastless track of highspeed railway considering random track irregularities / D. Ma, J. Shi, Z. Yan, L. Sun // Engineering Failure Analysis. — January 2022. — Vol. 131. — DOI:https://doi.org/10.1016/j.engfailanal.2021.105897.
3. Ali S. A. Railway noise levels, annoyance and countermeasures in Assiut, Egypt / S. A. Ali // Applied Acoustics. — January 2005. — Vol. 66. — Iss. 1. — Pp. 105–113. — DOI:https://doi.org/10.1016/j. apacoust.2004.06.005.
4. Kerr A. D. Analysis and tests of boned insulted rail joints subjected to vertical wheel loads / A. D. Kerr, J. E. Cox // International Journal of Mechanical Sciences. — October 1999. — Vol. 41. — Iss. 10. — Pp. 1253–1272. — DOI:https://doi.org/10.1016/S0020-7403(98)00042-3.
5. Kaewunruen S. Field trials for dynamic characteristics of railway track and its components using impact excitation technique / S. Kaewunruen, A. M. Remennikov // NDT & E International. — October 2007. — Vol. 40(7). — Pp. 510–519. DOI:https://doi.org/10.1016/j.ndteint.2007.03.004.
6. Li Z. An investigation into the causes of squats — Correlation analysis and numerical modeling / Z. Li, Zh. Xin, C. Esveld, R. Dollevoet et al. // Wear. — 30 October 2008. — Vol. 265. — Iss. 9–10. — Pp. 1349–1355. — DOI:https://doi.org/10.1016/j.wear.2008.02.037.
7. Mandal N. K. Sub-modelling for the ratchetting failure of insulated rail joints / N. K. Mandal, M. Dhanasekar // International Journal of Mechanical Sciences. — October 2013. — Vol. 75. — Pp. 110–122. — DOI:https://doi.org/10.1016/j.ijmecsci.2013.06.003.
8. Pomboa J. Influence of track conditions and wheel wear state on the loads imposed on the infrastructure by railway vehicles / J. Pomboa, J. Ambrósio, M. Pereira, R. Verardi et al. // Computers & Structures. — November 2011. — Vol. 89. — Iss. 21–22. — Pp. 1882–1894. — DOI:https://doi.org/10.1016/j. compstruc.2011.05.009.
9. Varandas J. N. Dynamic behaviour of railway tracks on transitions zones / J. N. Varandas, P. Hölscher, M. A. G. Silva // Computers & Structures. — July 2011. — Vol. 89. — Iss. 13–14. — Pp. 1468–1479. — DOI:https://doi.org/10.1016/j.compstruc.2011.02.013.
10. Luoa Y. Numerical investigation of nonlinear properties of a rubber absorber in rail fastening systems / Y. Luoa, Y. Liu, H. P. Yin // International Journal of Mechanical Sciences. — April 2013. — Vol. 69. — Pp. 107–113. — DOI:https://doi.org/10.1016/j.ijmecsci.2013.01.034.
11. Klaus H. An extended linear model for the prediction of short pitch corrugation / H. Klaus, K. Klaus // Wear. — January 1996. — Vol. 191. — Iss. 1–2. — Pp. 161–169. — DOI:https://doi.org/10.1016/0043- 1648(95)06747-7.
12. Ilias H. The influence of railpad stiffness on wheelset/track interaction and corrugation growth / H. Ilias // Journal of Sound and Vibration. — 11 November 1999. — Vol. 227. — Iss. 5. — Pp. 935–948. — DOI:https://doi.org/10.1006/jsvi.1999.2059.
13. Nielsen J. C. O. Numerical prediction of rail roughness growth on tangent railway tracks / J. C. O. Nielsen // Journal of Sound and Vibration. — 23 October 2003. — Vol. 267. — Iss. 3. — Pp. 537–548. — DOI:https://doi.org/10.1016/S0022-460X(03)00713-2.
14. Gry L. Dynamic modelling of railway track based on wave propagation / L. Gry // Journal of Sound and Vibration. — 22 August 1996. — Vol. 195. — Iss. 3. — Pp. 477–505. — DOI: 10.1006/ jsvi.1996.0438.
15. Mandal N. K. On the low cycle fatigue failure of insulated rail joints (IRJs) / N. K. Mandal // Engineering Failure Analysis. — May 2014. — Vol. 40. — Pp. 58–74. — DOI:https://doi.org/10.1016/j.engfailanal. 2014.02.006.
16. Benson D. J. A single surface contact algorithm for the post-buckling analysis of shell structures / D. J. Benson, J. O. Hallquist // Computer Methods in Applied Mechanics and Engineering. — January 1990. — Vol. 78. — Iss. 2. — Pp. 141–163. DOI:https://doi.org/10.1016/0045-7825(90)90098-7.
17. Thompson D. J. Developments of the indirect method for measuring the high frequency dynamic stiffness of resilient elements / D. J. Thompson, W. J. van Vliet, J. W. Verheij // Journal of Sound and Vibration. — 28 May 1998. — Vol. 213. — Iss. 1. — Pp. 169–188. DOI: 10.1006/ jsvi.1998.1492.
18. Hong X. Fatigue damage analysis and life prediction of e-clip in railway fasteners based on ABAQUS and FE-SAFE / X. Hong, G. Xiao, W. Haoyu, L. Xing et al. // Advances in Mechanical Engineering. — 2018. — Vol. 10(3). — Pp. 1–12. — DOI:https://doi.org/10.1177/1687814018767249.
19. Deshimaru T. Permissible lateral force and fatigue life for rail fastening system / T. Deshimaru, S. Tamagawa, H. Kataoka // Quarterly Report of RTRI. — 2017. — Vol. 58. — Pp. 236–241. — URL: https://www.researchgate.net/publication/319324842_Permissible_Lateral_Force_and_Fatigue_Life_ for_Rail_Fastening_System.
20. Liu Y. The Effect of Material Static Mechanical Properties on the Fatigue Crack Initiation Life of Rail Fastening Clips / Y. Liu, Q. Li, X. Jiang, H. Liu et al. // Hindawi Advances in Civil Engineering. — Vol. 2021. — Article ID 1366007. — 14 p. — DOI:https://doi.org/10.1155/2021/1366007.
21. Savin A. V. Bezballastnyy put' / A. V. Savin. — M.: RAS, 2017. — 192 s.
22. Savin A. V. Tehnicheskie trebovaniya k elementam verhnego stroeniya puti / A. V. Savin, A. V. Kuznecova, A. V. Petrov, S. A. Vasil'eva // Transportnoe stroitel'stvo: Sbornik statey vtoroy vserossiyskoy nauchno-tehnicheskoy konferencii. — M.: Pero, 2021. — S. 23–32.
23. Savin A. V. The Service Life of Ballastless Track / A. V. Savin // Procedia Engineering. — 2017. — Vol. 189. — Pp. 379–385. — DOI:https://doi.org/10.1016/j.proeng.2017.05.060.
24. Savin A. V. Vliyanie rel'sovyh skrepleniy na ustoychivost' besstykovogo puti / A. V. Savin, E. V. Solomatin // East European Scientific Journal. — 2023. — № 12(97). — S. 13–18. — URL: https://archive.eesa-journal.com/index.php/eesa/issue/view/93/142.
25. Hovorukha V. Studying and improving intermediate rail fastening of rail transport / V. Hovorukha // E3S Web of Conferences 109, 00028 (2019) Essays of Mining Science and Practice 2019. — DOI:https://doi.org/10.1051/e3sconf/201910900028.
26. Petrov A. V. Zhestkost' rel'sovyh skrepleniy bezballastnoy konstrukcii puti / A. V. Petrov, S. V. Mihaylov, A. V. Savin // Put' i putevoe hozyaystvo. — 2022. — № 1. — C. 8–10.
27. Savin A. Acoustic impact on bridges / A. Savin, V. Ermakov, M. Egorov. — URL: https:// authors.elsevier.com/sd/article/S2352146522003106.
28. Nikitin D. Analysis of strength characteristics in railroad dowels produced by various manufacturers / D. Nikitin, L. Nikitina, A. Asoyan, A. Marusin // Architecture and Engineering. — 2019. — Vol. 4. — Iss. 1. — Pp. 23–31. — DOI:https://doi.org/10.23968/2500-0055-2019-4-1-23-31.
29. Klaus H. An extended linear model for the prediction of short pitch corrugation / H. Klaus, K. Klaus // Wear. — January 1996. — Vol. 191. — Iss. 1–2. — Pp. 161–169. — DOI:https://doi.org/10.1016/0043- 1648(95)06747-7.
30. Ilias H. The influence of railpad stiffness on wheelset/track interaction and corrugation growth / H. Ilias // Journal of Sound and Vibration. — 11 November 1999. — Vol. 227. — Iss. 5. — Pp. 935–948. — DOI:https://doi.org/10.1006/jsvi.1999.2059.