Russian Federation
Russian Federation
Russian Federation
Purpose: To confirm the operability of a passive physical-chemical method for protection of a contact wire against icing. Methods: The implementation of the simulation model was conducted within the Python software environment. The model integrates the fundamental physical processes, including heat transfer (temperature distribution in the wire and coating layers), phase transition (freezing of water, taking into account latent heat), hydrodynamics of droplets (movement of water under the action of gravity, surface tension, and wind) and turbulence (random wind fluctuations affecting the trajectories of droplets). Results: The simulation model developed takes into account heat transfer, water phase transition, droplet hydrodynamics, and wind turbulence on the relief surface of a contact wire with heat-insulating and hydrophobic coatings. Numerical calculations performed using the explicit finite difference method with the Laplacian operator have shown that ice is predominantly formed in the lower grooves of the relief, and turbulence enhances droplet shedding, minimizing icing of the upper part. The model has confirmed the operability of a method for increasing the anti-icing efficiency of a contact network conductor, providing passive protection and ice removal. Practical significance: The model enables the variation of parameters (relief depth, coating thickness and properties, wind characteristics) and the prediction of icing zones and intensity without the necessity for expensive full-scale experiments.
Contact wire, icing, heat transfer, phase transition, relief surface, hydrophobic coating, droplet hydrodynamics, turbulence, simulation modelling, finite difference method
1. Patent № 2827574 Rossiyskaya Federaciya, C-1 RF, MPK 01B 5/2. Kontaktnyy provod s antiobledenitel'nym pokrytiem dlya vozdushnyh liniy elektroperedach / V. P. Bubnov, V. A. Barausov, V. I. Moiseev; zayavl. № 2024106114 ot 05.03.2024; Byul. 28.
2. Tolstyh V. K. Matematicheskoe i chislennoe modelirovanie nestacionarnyh techeniy s fazovymi perehodami v protivotochnyh teploobmennyh apparatah / V. K. Tolstyh, K. A. Pshenichnyy // Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie. — 2023. — № 16(2).
3. Simonov O. A. Chislennoe modelirovanie fazovogo perehoda «voda — led» v vysokopronicaemyh vodonasyschennyh poristyh sredah / O. A. Simonov, L. N. Filimonova // Vestn. Tyumenskogo gos. un-ta. Neft', gaz, energetika. — 2023. — № 9(1). — S. 22–38.
4. Pakhomov M. A. Modeling of turbulent heat-transfer augmentation in gas-droplet flow / M. A. Pakhomov, V. I. Terekhov // Energies. — 2022. — № 15(16). — P. 5861.
5. Druzhinin O. A. The study of momentum, mass, and heat transfer in a droplet-laden turbulent airflow over a waved water surface by DNS / O. A. Druzhinin, Yu. I. Troitskaya, S. S. Zilitinkevich // J. Phys. Oceanogr. — 2022. — № 52(3).
6. Sorokin K. E. Chislennoe modelirovanie obledeneniya v programmnom komplekse FlowVision / Sorokin K. E. i dr. // Komp'yuternye issledovaniya i modelirovanie. — 2020. — № 12(1). S. 83–96.
7. Kalyulin S. L. Chislennoe modelirovanie obledeneniya pri vibraciyah aerodinamicheskogo profilya / S. L. Kalyulin, V. Ya. Modorskiy // Vestn. PNIPU. Aerokosm. tehnika. — 2023. — № 72. — S. 100–112.
8. Tal'skiy A. Izucheno vliyanie gidrofobnyh pokrytiy na obledenenie samoletov / A. Tal'skiy // 21mm.ru. — 20 dekabrya 2021.
9. Samarskiy A. A. Teoriya raznostnyh shem / A. A. Samarskiy. — M.: Nauka, 1977.
10. Hasanov M. Matematicheskoe modelirovanie nestacionarnogo konvektivnogo ohlazhdeniya mnogosloynyh tel pri additivnom proizvodstve izdeliy / M. Hasanov i dr. // Inzh. vestn. Dona. — 2022. — № 7.
11. Sadykov T. N. Ispol'zovanie Python dlya chislennogo resheniya zadach teploprovodnosti i vizualizacii rezul'tatov / T. N. Sadykov, V. A. Galkin, D. A. Morgun // Uspehi kibernetiki. — 2023. — № 4(3).
12. Balashov V. A. Pryamoe chislennoe modelirovanie techeniy zhidkosti v porovom prostranstve: diss. … kand. fiz.-mat. nauk / V. A. Balashov. — MFTI, 2021.
13. ElectricalSchool — Obrazovanie gololeda i izmorozi na provodah LEP i bor'ba s nimi. — 2019.
14. Fursanov M. I. Gololednye avarii na LEP — prichiny poyavleniya i sposoby predotvrascheniya / M. I. Fursanov, A. A. Farino, P. S. Gorud'ko // Energohozyaystvo predpriyatiy. — 2017. — № 2(95). — S. 26–29.