Russian Federation
Russian Federation
UDC 614.8
Abstract: The paper discusses the development of a comprehensive statistical steganography detection tool and its implementation in the module for analyzing the reliability of graphic data from automated control systems and ITS. The purpose of this implementation is to verify the authenticity and confirm the reliability of graphic data circulating in the system, received from machine vision devices and other means of image recording and image sensors, and to improve the reliability of automated systems. The developed software steganography detector has been implemented in the form of an API server. This allows the detector to be integrated into an automated system circuit and perform steganographic analysis in automatic mode. The output of this analysis is binary, indicating the presence or absence of embedded data in the analyzed image files. The developed steganography detector is represented by the Stego Revealer softwarecomplex, which is registered with Rospatent.This complex demonstrates the capabilities of steganographic analysis on a test bench, with a performance of 656 gigaflops of images with a resolution of approximately 1.2 megapixels in 300 ms. It also effectively processes a large number of incoming requests simultaneously, up to 100. Concurrently, the server demonstrates a capacity to endure a workload of up to 10 RPS, exhibiting a 2% performance decline. This facilitates the real-time analysis of images using steganography, particularly when employing advanced server microprocessor technology.
steganalysis; steganography; steganography detector; images; automated systems
1. Aleksandrov E. A. Sistema distancionnogo videokon- trolya pri dvizhenii vagonami vpered / E. A. Alek- sandrov // Zheleznye dorogi mira. — 2025. — № 4. — S. 48–50.
2. Patent na poleznuyu model' № 212718 U1 Rossiyskaya Federaciya, MPK B61L 29/00. Ustroystvo obnaruzheniya prepyatstviy na puti dvizheniya rel'sovogo transport- nogo sredstva: № 2022111729: zayavl. 28.04.2022: opubl. 03.08.2022 / I. A. Deylid, I. N. Korolev, S. V. Kudryashov, P. A. Popov; zayavitel' OAO «RZhD».
3. Malinskiy S. V. Avtomaticheskoe opredelenie granic opasnyh uchastkov zheleznodorozhnogo puti / S. V. Malin- skiy, A. V. Abramov, V. O. Sharova // Intellektual'nye transportnye sistemy : materialy IV Mezhdunar. nauch.- prakt. konf., Moskva, 22 maya 2025 g. — M.: RUT (MIIT), 2025. — S. 624–630.
4. Patent № 2680927 C1 Rossiyskaya Federaciya, MPK B61K 9/08, G01N 27/82, G01N 29/04. Sposob diagnostiki rel'- sovogo puti i sinhronizacii rezul'tatov izmereniy: № 2018104776: zayavl. 07.02.2018: opubl. 28.02.2019 / A. A. Markov, A. G. Antipov, A. Yu. Verevkin; zayavitel' OAO «Radioavionika».
5. Rozenberg E. N. Aktual'nost' i etapy perehoda na intel- lektual'noe upravlenie ekspluatacionnoy rabotoy zheleznodorozhnogo transporta / E. N. Rozenberg, M. A. Dezhkov, A. A. Nikonyuk // Intellektual'nye trans- portnye sistemy: materialy IV Mezhdunar. nauch.-prakt. konf., Moskva, 22 maya 2025 g. — M.: RUT (MIIT), 2025. — S. 369–375.
6. Nutovich V. E. Formalizovannye metody obrabotki informacii, analiza i sinteza sistemy intellektu- al'nogo kommercheskogo osmotra vagonov / V. E. Nuto- vich // Nauka i tehnika transporta. — 2023. — № 3. — S. 77–85.
7. Sidorenko V. G. Intellektual'naya sistema obnaruzheniya narusheniy v soblyudenii trebovaniy bezopasnosti pri rabotah na ob'ektah zheleznodorozhnoy infra- struktury / V. G. Sidorenko, M. A. Kulagin, D. M. Rodina // Avtomatika na transporte. — 2025. — T. 11. — № 1. — S. 55–65.
8. Andreev V. E. Cifrovaya zheleznodorozhnaya stanciya — ot koncepcii k real'nomu vnedreniyu / V. E. Andreev, A. I. Dolgiy, V. V. Kudyukin i dr. // Avtomatika, svyaz', informatika. — 2023. — № 9. — S. 2–6.
9. Kudyukin V. V. Imitacionnoe modelirovanie raboty robototehnicheskih kompleksov, prednaznachennyh dlya rasformirovaniya sostavov na sortirovochnyh gorkah / V. V. Kudyukin, A. V. Vukolov, V. S. Kuz'min // Avtomatika na transporte. — 2025. — T. 11. — № 1. — S. 16–29.
10. Ansari A. S. A Review on the Recent Trends of Image Steganography for VANET Applications / A. S. Ansari // Computers, Materials and Continua. — 2024. — Vol. 78. — Iss. 3. — Pp. 2865–2892.
11. Shedole S. M. A Comprehensive Study on Digital Watermarking for Security Threats and Research Directions / S. M. Shedole, V. Santhi // International Journal of Data Informatics and Intelligent Computing. — 2025. — Vol. 4. — Iss. 1. — Pp. 54–72.
12. Hu K. Learning-based image steganography and watermarking: A survey / K. Hu, M. Wang, X. Ma, J. Chen // Expert Systems with Applications. — 2024. — Iss. 249.
13. Hahn D. Security and Privacy Issues in Intelligent Transportation Systems: Classification and Challenges / D. Hahn, A. Munir, V. Behzadan // IEEE Intelligent Transportation Systems Magazine. — 2021. — Vol. 13. — Iss. 1. — Pp. 181–196.
14. Sidorenko V. G. Protivodeystvie ugrozam informaci- onnoy bezopasnosti, svyazannym s primeneniem sredstv steganografii / V. G. Sidorenko, Ya. L. Grachev // Avtomatika, svyaz', informatika. — 2025. — № 1. — S. 17–22.
15. Security Brief: Actor Uses Compromised Accounts, Customized Social Engineering to Target Transport and Logistics Firms with Malware. — URL: https://www. proofpoint.com/us/blog/threat-insight/security-brief- actor-uses-compromised-accounts-customized-social- engineering (data obrascheniya: 28.09.2024).
16. Sea-Tac Airport officials confirm cyberattack disrupted service, websites. — URL: https://www.seattletimes.com/ business/sea-tac-airport-officials-say-cyberattack- disrupted-service-websites/ (data obrascheniya: 29.09.2024).
17. Matyushin A. Kiberimmunnyy podhod k proektirovaniyu kak prakticheskaya realizaciya koncepcii Security-by- Design / A. Matyushin, E. Rudina // CONNECT. Mir infor- macionnyh tehnologiy. — 2023. — № 7–8. — S. 38–44.
18. Anonymous hacked Russian cams, websites, announced a clamorous leak. — URL: https://securityaffairs.com/128847/ hacktivism/anonymous-vs-russia.html (data obrascheniya: 16.08.2025).
19. Samyy bezzaschitnyy — uzhe ne Sapsan. Vse okazalos' kuda huzhe… — URL: https://habr.com/ru/ articles/536750/ (data obrascheniya: 13.08.2025).
20. Cyberattack on Dutch prosecution service is keeping speed cameras offline. — URL: https://www.theregister. com/2025/08/15/cyberattack_on_dutch_prosecution_ service/ (data obrascheniya: 15.08.2025).
21. Vulnerabilities in Johnson Controls’ exacqVision Web Service Expose Security Systems to Video-Stream Hijacking. — URL: https://www.nozominetworks.com/ blog/vulnerabilities-in-johnson-controls-exacqvision-web- service-expose-security-systems-to-video-stream- hijacking (data obrascheniya: 15.08.2025).
22. Kompleksnaya programma innovacionnogo razvitiya holdinga «RZhD» na period do 2025 goda. — URL: https:// company.rzd.ru/ru/9990/page/103290?id=19093 (data obrascheniya: 05.01.2025).
23. Tao F. Adversarial Attack for Deep Steganography Based on Surrogate Training and Knowledge Diffusion / F. Tao, Ch. Cao, H. Li et al. // Applied Sciences (Switzerland). — 2023. — Vol. 13. — Iss. 11. — P. 6588.
24. Grigorenko A. G. Obzor metodov zaschity ot adversial'- noy ataki One Pixel v sistemah mashinnogo obucheniya / A. G. Grigorenko, N. A. Vasil'ev, D. S. Sitdikov // Sistemy intellektual'nogo upravleniya i iskusstvennyy intel- lekt: teoriya i praktika: sb. tr. II nac. nauch.-prakt. konf., Sankt-Peterburg, 27 iyunya 2024 g. — SPb.: GUMRF im. adm. S. O. Makarova, 2024. — S. 30–36.
25. Grachev Ya. L. Zadachi avtomatizacii stegoanaliza / Ya. L. Grachev, V. G. Sidorenko // Intellektual'nye trans- portnye sistemy: materialy II Mezhdunar. nauch.-prakt. konf., Moskva, 25 maya 2023 g.— M.: RUT, 2023. — S. 450–455.
26. Grachev Ya. L. Analiz stepeni razrabotannosti temy ste- goanaliza v faylah graficheskih formatov / Ya. L. Grachev, V. G. Sidorenko // Intellektual'nye transportnye sistemy: materialy IV Mezhdunar. nauch.-prakt. konf., Moskva, 22 maya 2025 g. — M.: RUT (MIIT), 2025. — S. 502– 511.
27. Fridrich J. Rich Models for Steganalysis of Digital Images / J. Fridrich, J. Kodovsky // IEEE Transactions on Information Forensics and Security. — 2012. — Vol. 7. — Iss. 3. — Pp. 868–882.
28. Fridrich J. Steganography in Digital Media. Principles, Algorithms, and Applications / J. Fridrich. — Cambridge: Cambridge University Press, 2010. — 431 p.
29. Grachev Ya. L. Ispol'zovanie kachestvennyh harakteri- stik izobrazheniya dlya kompleksnogo stegoanaliza / Ya. L. Grachev, V. G. Sidorenko // Nadezhnost'. — 2025. — T. 25. — № 1. — S. 67–74.
30. Grachev Ya. L. Primenenie stegoanaliza dlya obespecheniya celostnosti informacii v intellektual'nyh sistemah transporta / Ya. L. Grachev, V. G. Sidorenko // Intellektual'nye transportnye sistemy: materialy Mezhdunar. nauch.-prakt. konf., Moskva, 26 maya 2022 g. — M.: RUT, 2022. — S. 389–396.
31. Westfeld A. Attacks on Steganographic Systems Breaking the Steganographic Utilities EzStego, Jsteg, Steganos, and S-Tools — and Some Lessons Learned / A. Westfeld, A. Pfitzmann // Lecture Notes in Computer Science. — 1999.
32. Fridrich J. Reliable detection of LSB steganography in color and grayscale images / J. Fridrich, M. Goljan, R. Du // Proceedings of the 2001 workshop on Multimedia and security new challenges — MM&Sec ’01. — New York: ACM Press, 2001. — P. 27.
33. Grachev Ya. L. Stegoanaliz metodov skrytiya informacii vgraficheskih konteynerah / Ya. L. Grachev, V. G. Sidorenko // Nadezhnost'. — 2021. — T. 21. — № 3. — S. 39–46.
34. Fielding R. T. Architectural styles and the design of network-based software architectures / R. T. Fielding. — 2001. — Pp. 76–106.
35. Svid. 2025614424 Rossiyskaya Federaciya. Svidetel'stvo o gosudarstvennoy registracii programmy dlya EVM. Programma kompleksnogo stegoanaliticheskogo detek- tirovaniya «StegoRevealer» / Ya. L. Grachev. — zaregistr. 21.02.2025.
36. Belim S. V. Stegoanaliz algoritma Koha — Zhao / S. V. Belim, D. E. Vil'hovskiy // Matematicheskoe i kom- p'yuternoe modelirovanie: sb. materialovVI Mezhdunar. nauch. konf., Omsk, 23 noyabrya 2018 g. — Omsk: Omskiy gos. un-t im. F. M. Dostoevskogo, 2018. — S. 185–188.
37. Breiman L. Random Forests / L. Breiman // Machine Learning. — 2001. — Vol. 45. — Iss. 1. — Pp. 5–32.
38. LISA Traffic Light Dataset. — URL: https://www.kaggle.com/ datasets/mbornoe/lisa-traffic-light-dataset (data obrasche- niya: 01.07.2025).
39. Russian traffic sign images dataset. — URL: https://www. kaggle.com/datasets/watchman/rtsd-dataset (data obra- scheniya: 01.07.2025).