Russian Federation
Russian Federation
Russian Federation
UDK 004.942 Исследование поведения объекта на основе его математической модели
This paper presents an analytical model for vehicle speed calculations at starting aquaplaning in real-time road conditions. High percentage of accidents associated with speed violations in adverse weather conditions makes the study relevant. A mathematical model based on the integral equations of mass and momentum conservation taking into account the tire geometric parameters, water film characteristics and those of the road surface has been developed. The proposed model makes it possible to calculate the critical speed of aquaplaning initiation for a specific vehicle. The paper presents the results of the simulation researching various factors affecting the aquaplaning initiation speed according to the developed model. The results of the study can be used for improving road safety including the unmanned vehicle operation, transport infrastructure design, as well as carrying out vehicle expertise and ensuring an aircraft take-off and landing safety.
hydroplaning; road safety; critical speed; mathematical modelling; road conditions; water film on road surface; unmanned vehicles
1. Bakanov K. S. Dorozhno-transportnaya avariynost' v Rossiyskoy Federacii v 2023 godu: Informacionno analiticheskiy obzor / K. S. Bakanov, P. V. Lyahov, A. S. Aysanov [i dr.]. — M.: FKU «NC BDD MVD Rossii», 2024. — 154 s. — EDN: https://elibrary.ru/BYRSGR.
2. Witcher C. Determination of rates of occurrence for hydroplaning events with naturalistic driving data / S. Witcher, D. Christ, J. Sudweeks, C. Layman, M. Perez // Journal of Safety Research. — 2024. — Vol. 91. — Pp. 303–313. — DOI:https://doi.org/10.1016/j.jsr.2024.09.018.
3. Hermange S. Experimental investigation of the leading parameters influencing the hydroplaning phenomenon / C. Hermange, V. Todoroff, F. Biesse, Y. Le-Chenadec // Vehicle System Dynamics. — 2022. — Vol. 60. — № 7. — Pp. 2375– 2392. — DOI:https://doi.org/10.1080/00423114.2021.1901941. — EDN: https://elibrary.ru/KUGNKN.
4. Dehnad M. H. A review of numerical and experimental studies on hydroplaning of vehicles in motion on road surfaces / M. H. Dehnad, A. Yazdi // Results in Engineering. — 2024. — Vol. 23. — Article 102438. — DOI:https://doi.org/10.1016/j. rineng.2024.102438.
5. Jing C. Numerical study of the tire hydroplaning behavior of aircraft on grooved concrete pavement / C. Jing, Du Nizhi, Z. Nan, Li Yue, D. Xue, Z. Hui // PLoS ONE. — 2023. — Vol. 18. — № 11. — DOI:https://doi.org/10.1371/journal. pone.0292701.
6. Vilsan A. Hydroplaning of Tires: A Review of Numerical Modeling and Novel Sensing Methods / A. Vilsan, C. Sandu // Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. — 2023. — DOI:https://doi.org/10.1115/DETC2023-116314.
7. Lee H. S. FDOT’s Enhanced Hydroplaning Prediction Tool / Lee H. S., Carvajal M., Holzschuher C., Choubane B. // Transportation Research Record: Journal of the Transportation Research Board. — 2021. — Vol. 2675. — № 10. — DOI:https://doi.org/10.1177/03611981211011479.
8. Hermange C. In-depth analysis of hydroplaning phenomenon accounting for tire wear on smooth ground / C. Hermange, G. Oger, Y. Le Chenadec, M. De Leffe // Journal of Fluids and Structures. — 2022 — Vol. 111(11–14). — Article 103555. — DOI:https://doi.org/10.1016/j.jfluidstructs.2022.103555.
9. Chen X. Permeable friction course design with consideration of hydroplaning risk / X. Chen, H. Wang // Canadian Journal of Civil Engineering. Canadian Science Publishing. — 2024. — DOI:https://doi.org/10.1139/cjce-2024-0267.
10. Kovalev V. A. Opredelenie skorosti vozmozhnogo akvaplanirovaniya / V. A. Kovalev, A. I. Fadeev, E. S. Voevodin [i dr.] // Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta. — 2014. — № 5(88). — S. 115– 119. — EDN: https://elibrary.ru/SGJFEH.
11. Schulz H. E. A Water Films and Hydroplaning on Highways: Hydrodynamic Aspects / H. E. Schulz, J. E. Curry, A. L. Simões // Journal of Transportation Engineering. Part B: Pavements. — 2021. — May. — DOI: 10.1061/ JPEODX.0000309.
12. Cabut D. Analysis of the water flow inside tire grooves of a rolling car using refraction particle image velocimetry / D. Cabut, M. Michard, S. Simoens, L. Mees, V. Todoroff, C. Hermange, Y. Le Chenadec // Physics of Fluids. —2021. — Vol. 33(3). — Article 032101. — DOI:https://doi.org/10.1063/5.0038834. 13. Akimenko A. V. Metodika i algoritm rascheta mestnyh poter' napora v truboprovodah / A. V. Akimenko, E. A. Anikeev, R. Yu. Medvedev // Modelirovanie sistem i processov. — 2023. — T. 16. — № 4. — S. 7–15. — DOI:https://doi.org/10.12737/2219-0767-2023-16-4-7-15. — EDN: https://elibrary.ru/MUAJWN.
13. Semin M. A. Sovershenstvovanie metodov rascheta ekvivalentnogo napora ezhektornyh ustanovok v gornyh vyrabotkah bol'shogo secheniya / M. A. Semin, S. V. Mal'cev, V. A. Rodionov // Izvestiya Tomskogo politehnicheskogo universiteta. Inzhiniring georesursov. — 2024. — T. 335. — № 7. — S. 185–195. — DOI: 10.1 8799/24131830/2024/7/4393. — EDN: https://elibrary.ru/QSJVTA.
14. Sokolov M. A. Sravnenie sposobov predstavleniya zavisimosti kinematicheskoy vyazkosti presnoy vody ot temperatury / M. A. Sokolov // Trudy Krylovskogo gosudarstvennogo nauchnogo centra. — 2020. — № 1(391). — S. 42–49. — DOIhttps://doi.org/10.24937/2542-2324-2020-1-391-42-49. — EDN: https://elibrary.ru/LCQOBP.
15. Korsun A. S. Integral'naya model' opisaniya profilya skorosti v sherohovatyh kanalah dlya inzhenernyh raschetov gidravlicheskogo soprotivleniya / A. S. Korsun, M. I. Pisarevskiy, Yu. N. Pisarevskaya, V. N. Fedoseev // Voprosy atomnoy nauki i tehniki. Seriya: Yaderno-reaktornye konstanty. — 2022. — № 2. — S. 132–140. — EDN: https://elibrary.ru/CTHLIR.
16. Kalyakin A. M. Novaya zavisimost' dlya opredeleniya koefficienta gidravlicheskogo soprotivleniya v perehodnoy zone soprotivleniya (ot laminarnogo rezhima k turbulentnomu) / A. M. Kalyakin, E. V. Chesnokova // Inzhenerno-stroitel'nyy zhurnal. — 2012. — № 2(28). — S. 51–55. — EDN: https://elibrary.ru/OWKIRD.
17. Montini E. Development and Experimental Assessment of a Control Logic for Hydroplaning Prevention / E. Montini, M. Salierno, S. Frigerio, S. Melzi // 16th International Symposium on Advanced Vehicle Control. — 2024. — Pr. 293–300. — DOI:https://doi.org/10.1007/978-3-031-70392-8_42.
18. Gurganus C. F., Chang S., Gharaibeh N. G. Evaluation of hydroplaning potential using Mobile Lidar measurements for network-level pavement management applications // Road Materials and Pavement Design. — 2021. — Vol. 23. — № 1. — Pr. 1–10. — DOI:https://doi.org/10.1080/14680629.2021.1899962.
19. Rana Md. M. Impact of autonomous truck implementation: rutting and highway safety perspectives / Md. M. Rana, K. Hossain // Road Materials and Pavement Design. — 2022. — Vol. 23. — № 10. — P. 2205–2226. — DOI: 10.108 0/14680629.2021.1963815. — EDN: https://elibrary.ru/CNFWXE.