Abstract and keywords
Abstract (English):
The sensitivity of four approximate Saaty estimates for a priority vector in the Analytic Hierarchy Process (AHP) was studied using MATLAB tools. This method involves structuring the problem hierarchically, conducting pairwise comparisons of elements, and calculating the priority vector at each level of hierarchy. To model expert errors in these pairwise comparisons, random variables were introduced into the elements of the consistent Saaty matrix. Purpose: to study the sensitivity of the AHP by calculating coefficients for the linear convolutions of the four Saaty estimates for the priority vector. A linear combination of these estimates was equated to the precise priority vector, and a series of SLAEs n×4 (n = ) for the weight coefficients is resolved using the pseudoinverse matrix method along with Tikhonov regularization. Results: it has been statistically established that the initial two Saaty estimates for the priority vector were insignificant, as their weight coefficients were not substantial and nearly reached zero. In contrast, the weight coefficients of the third and fourth estimates were stable and greater than zero. Practical significance: the results obtained can be applied in a proprietary software product for evaluating alternatives in decision-making without involving the MATLAB commercial engineering calculation environment.

Keywords:
analytic hierarchy process, positive inverse-symmetric matrix, Saaty estimates for the priority vector, perturbation of the pairwise comparison matrix, linear convolution of estimates, pseudoinverse matrix, Tikhonov regularization
Text
Text (PDF): Read Download
References

1. Litvak B. G. Ekspertnye ocenki i prinyatie resheniy. M.: Patent, 1996. 271 s.

2. Larichev O. I. Teoriya i metody prinyatiya resheniy, a takzhe Hronika sobytiy v Volshebnyh Stranah. M.: Logos, 2000. 296 s.

3. Orlov A. I. Organizacionno-ekonomicheskoe modelirovanie: uchebnik: v 3 ch. Ch. 2. Ekspertnye ocenki. M.: Izd-vo MGTU im. N. E. Baumana, 2011. 486 s.

4. Saati T. L. Prinyatie resheniy. Metod analiza ierarhiy / per. s angl. R. G. Vachnadze. M.: Radio i svyaz', 1993. 315 s.

5. Forman E. H., Gass S. I. The Analytic Hierarchy Process — An Exposition // Operations Research. 2001. Vol. 49, Iss. 4. Pp. 469–486. DOI:https://doi.org/10.1287/opre.49.4.469.11231.

6. Bodin L., Gass S. I. On Teaching the Analytic Hierarchy Process // Computers and Operations Research. 2003. Vol. 30, Iss. 10. Pp. 1487–1497. DOI:https://doi.org/10.1016/S0305-0548(02)00188-0.

7. Ishizaka A., Labib A. Analytic Hierarchy Process and Expert Choice: Benefits and Limitations // OR Insight. 2009. Vol. 22, Iss. 4. Pp. 201–220. DOI:https://doi.org/10.1057/ori.2009.10.

8. Horn R., Dzhonson Ch. Matrichnyy analiz / per. s angl. pod red. H. D. Ikramova. M.: Mir, 1989. 655 s.

9. Brigadnov I. A. Metody vychislitel'noy matematiki. SPb.: Izd-vo SZTU, 2001. 83 s.

10. Andrushevskiy N. M. Analiz ustoychivosti resheniy sistem lineynyh algebraicheskih uravneniy: metodicheskoe posobie special'nogo vychislitel'nogo praktikuma. M.: Izd. otdel fakul'teta VMiK MGU im. M. V. Lomonosova: MAKS Press, 2008. 76 s.

11. Tihonov A. N. O nekorrektnyh zadachah lineynoy algebry i ustoychivom metode ih resheniya // Doklady Akademii nauk SSSR. 1965. T. 163, № 3. S. 591–594.

12. Tihonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnyh zadach. 2-e izd. M.: Nauka. Glavnaya redakciya fiziko-matematicheskoy literatury, 1979. 285 s.

Login or Create
* Forgot password?